More Binomial Expansions

A LevelAQAEdexcelOCR

More Binomial Expansions Revision

More Binomial Expansions

In this section we shall look at some advanced skills involving binomial expansion, including partial fractions and approximating.

Make sure you are happy with the following topics before continuing.

A LevelAQAEdexcelOCR

Partial Fractions

We can find the binomial expansion of complicated functions by first decomposing them into partial fractions.

Example: Find the first three terms of the expansion of \dfrac{2x+1}{(x-1)(x+2)}.

\begin{aligned}\dfrac{2x+1}{(x-1)(x+2)}&=\dfrac{1}{x-1}+\dfrac{1}{x+2}\\[1.2em]&=(x-1)^{-1}+(x+2)^{-1}\end{aligned}

Now we can do binomial expansion on (x-1)^{-1} and (x+2)^{-1}

\begin{aligned}&\dfrac{2x+1}{(x-1)(x+2)}=(-1)^{-1}(1-x)^{-1}+2^{-1}\left(1+\dfrac{1}{2}x\right)^{-1}\\[1.2em]&=-\left(1-(-x)+\dfrac{-1\times(-2)}{1\times2}(-x)^{2}+...\right)\\[1.2em]&+\dfrac{1}{2}\left(1-\dfrac{1}{2}x+\dfrac{-1\times(-2)}{1\times2}\left(\dfrac{1}{2}x\right)^{2}+...\right)\\[1.2em]&=-\left(1+x+\dfrac{2}{2}x^{2}+...\right)\\[1.2em]&+\dfrac{1}{2}\left(1-\dfrac{1}{2}x+\dfrac{2}{2}\times\dfrac{1}{4}x^{2}+...\right)\\[1.2em]&=-(1+x+x^{2}+...)+\dfrac{1}{2}\left(1-\dfrac{1}{2}x+\dfrac{1}{4}x^{2}+...\right)\\[1.2em]&=-1-x-x^{2}+\dfrac{1}{2}-\dfrac{1}{4}x+\dfrac{1}{8}x^{2}+...\\[1.2em]&=-\dfrac{1}{2}-\dfrac{5}{4}x-\dfrac{7}{8}x^{2}+...\end{aligned}

A LevelAQAEdexcelOCR

Approximations from Binomial Expansions

By substituting in certain values for x, we can use the binomial expansion to approximate things.

Example: Use the binomial expansion of (1-3x)^{\frac{1}{4}} to four terms to find \sqrt[4]{0.97}

 

\begin{aligned}(1-3x)^{\frac{1}{4}}&=1-\left(\dfrac{1}{4}\times3x\right)+\left(\dfrac{\dfrac{1}{4}\times -\dfrac{3}{4}}{1\times2}\times(-3x)^{2}\right)\\[1.2em]&+\left(\dfrac{\dfrac{1}{4}\times -\dfrac{3}{4}\times-\dfrac{7}{4}}{1\times2\times3}\times(-3x)^{3}\right)+...\\[1.2em]&=1-\dfrac{3}{4}x+\left(\dfrac{-\dfrac{3}{16}}{2}\times9x^{2}\right)-\left(\dfrac{\dfrac{21}{64}}{6}\times27x^{3}\right)+...\\[1.2em]&=1-\dfrac{3}{4}x-\dfrac{3\times9}{16\times2}x^{2}-\dfrac{21\times27}{64\times6}x^{3}\\[1.2em]&=1-\dfrac{3}{4}x-\dfrac{27}{32}x^{2}-\dfrac{567}{384}x^{3}\\[1.2em]&=1-\dfrac{3}{4}x-\dfrac{27}{32}x^{2}-\dfrac{189}{128}x^{3}\end{aligned}

 

Now substitute x=\dfrac{1}{100}

 

\left(1-3\times\dfrac{1}{100}\right)^{\frac{1}{4}}=1-\left(\dfrac{3}{4}\times\dfrac{1}{100}\right)-\left(\dfrac{27}{32}\times\left(\dfrac{1}{100}\right)^{2}\right)-\left(\dfrac{189}{128}\times\left(\dfrac{1}{100}\right)^{3}\right)

 

(1-3\times0.01)^{\frac{1}{4}}=1-\dfrac{3}{400}-\left(\dfrac{27}{32}\times\dfrac{1}{10000}\right)-\left(\dfrac{189}{128}\times\dfrac{1}{1000000}\right)

 

(1-0.03)^{\frac{1}{4}}=1-\dfrac{3}{400}-\dfrac{27}{320000}-\dfrac{189}{128000000}

 

0.97^{\frac{1}{4}}=0.9916547734

 

So our estimate is \sqrt[4]{0.97}=0.9916547734, which is very close to the real value of 0.9924141173. Clearly, this approximation method is a very powerful tool.

A LevelAQAEdexcelOCR

More Binomial Expansions Example Questions

Question 1: Given that \dfrac{6x^{2}+25x+23}{(x+1)(x+2)(x+3)}=\dfrac{2}{x+1}+\dfrac{3}{x+2}+\dfrac{1}{x+3}, find the binomial expansion of \dfrac{6x^{2}+25x+23}{(x+1)(x+2)(x+3)} up to and including the x^{2} term.

[6 marks]

A Level AQAEdexcelOCR
\begin{aligned}&\dfrac{6x^{2}+25x+23}{(x+1)(x+2)(x+3)}=\dfrac{2}{x+1}+\dfrac{3}{x+2}+\dfrac{1}{x+3}\\[1.2em]&=2(x+1)^{-1}+3(x+2)^{-1}+(x+3)^{-1}\\[1.2em]&=2(1+x)^{-1}+3\times2^{-1}\left(1+\dfrac{1}{2}x\right)^{-1}\\[1.2em]&+3^{-1}\left(1+\dfrac{1}{3}x\right)^{-1}\\[1.2em]&=2(1+x)^{-1}+3\times\dfrac{1}{2}\left(1+\dfrac{1}{2}x\right)^{-1}\\[1.2em]&+\dfrac{1}{3}\left(1+\dfrac{1}{3}x\right)^{-1}\\[1.2em]&=2(1+x)^{-1}+\dfrac{3}{2}\left(1+\dfrac{1}{2}x\right)^{-1}+\dfrac{1}{3}\left(1+\dfrac{1}{3}x\right)^{-1}\\[1.2em]&=2\left(1-x+\dfrac{-1\times(-2)}{1\times2}x^{2}\right)\\[1.2em]&+\dfrac{3}{2}\left(1-\dfrac{1}{2}x+\dfrac{-1\times(-2)}{1\times2}\left(\dfrac{1}{2}x\right)^{2}\right)\\[1.2em]&+\dfrac{1}{3}\left(1-\dfrac{1}{3}x+\dfrac{-1\times(-2)}{1\times2}\left(\dfrac{1}{3}x\right)^{2}\right)\\[1.2em]&=2\left(1-x+\dfrac{2}{2}x^{2}\right)+\dfrac{3}{2}\left(1-\dfrac{1}{2}x+\dfrac{2}{2}\times\dfrac{1}{4}x^{2}\right)\\[1.2em]&+\dfrac{1}{3}\left(1-\dfrac{1}{3}x+\dfrac{2}{2}\times\dfrac{1}{9}x^{2}\right)\\[1.2em]&=2(1-x+x^{2})+\dfrac{3}{2}\left(1-\dfrac{1}{2}x+\dfrac{1}{4}x^{2}\right)\\[1.2em]&+\dfrac{1}{3}\left(1-\dfrac{1}{3}x+\dfrac{1}{9}x^{2}\right)\\[1.2em]&=2-2x+2x^{2}+\dfrac{3}{2}-\dfrac{3}{4}x+\dfrac{3}{8}x^{2}+\dfrac{1}{3}-\dfrac{1}{9}x\\[1.2em]&+\dfrac{1}{27}x^{2}\\[1.2em]&=\dfrac{23}{6}-\dfrac{103}{36}x+\dfrac{521}{216}x^{2}\end{aligned}
MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 2: Use the approximation (1-8x)^{\frac{1}{3}}=1-\dfrac{8}{3}x-\dfrac{64}{9}x^{2}+... to find \sqrt[3]{0.84}, giving your answer to 4 decimal places.

This expansion is valid for |x|<\dfrac{1}{8}

[3 marks]

A Level AQAEdexcelOCR

Try x=0.02

 

(1-8\times0.02)^{\frac{1}{3}}=1-\left(\dfrac{8}{3}\times0.02\right)-\left(\dfrac{64}{9}\times0.02^{2}\right)+...

 

(1-0.16)^{\frac{1}{3}}=1-\dfrac{0.16}{3}-\left(\dfrac{64}{9}\times0.0004\right)+...

 

(0.84)^{\frac{1}{3}}=1-\dfrac{16}{300}-\dfrac{0.0256}{9}+...

 

\begin{aligned}\sqrt[3]{0.84}&=1-\dfrac{4}{75}-\dfrac{256}{90000}+...\\[1.2em]&=1-\dfrac{4}{75}-\dfrac{16}{5625}+...\\[1.2em]&=1-\dfrac{4}{75}-\dfrac{16}{5625}+...\\[1.2em]&=\dfrac{5309}{5625}\\[1.2em]&=0.9438\end{aligned}
MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 3:

i) Express \dfrac{2+9x}{(1+5x)(1+4x)} as partial fractions.

ii) Hence find the first three terms of the binomial expansion of \dfrac{2+9x}{(1+5x)(1+4x)}

[7 marks]

A Level AQAEdexcelOCR

i) \dfrac{2+9x}{(1+5x)(1+4x)}=\dfrac{A}{1+5x}+\dfrac{B}{1+4x}

 

2+9x=A(1+4x)+B(1+5x)

 

2+9x=A+4Ax+B+5Bx

 

A+B=2\;\;5A+4B=9

 

A=1\;\;B=1

 

\dfrac{2+9x}{(1+5x)(1+4x)}=\dfrac{1}{1+5x}+\dfrac{1}{1+4x}

 

ii)

\begin{aligned}&\dfrac{2+9x}{(1+5x)(1+4x)}=\dfrac{1}{1+5x}+\dfrac{1}{1+4x}\\[1.2em]&=(1+5x)^{-1}+(1+4x)^{-1}\\[1.2em]&=1-5x+\left(\dfrac{-1\times(-2)}{1\times2}(5x)^{2}\right)+...+1-4x\\[1.2em]&+\left(\dfrac{-1\times(-2)}{1\times2}(4x)^{2}\right)+...\\[1.2em]&=1-5x+\left(\dfrac{2}{2}\times25x^{2}\right)+...+1-4x\\[1.2em]&+\left(\dfrac{-1\times(-2)}{1\times2}16x^{2}\right)+...\\[1.2em]&=2-9x+25x^{2}+16x^{2}+...\\[1.2em]&=2-9x+41x^{2}+...\end{aligned}
MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 4: Find an approximation for \dfrac{1}{0.93^{3}} by first expanding (1-7x)^{-3} to five terms.

[8 marks]

A Level AQAEdexcelOCR
\begin{aligned}&(1-7x)^{-3}=1-\left(7\times(-3)x\right)+\left(\dfrac{-3\times(-4)}{1\times2}(-7x)^{2}\right)\\[1.2em]&+\left(\dfrac{-3\times(-4)\times(-5)}{1\times2\times3}(-7x)^{3}\right)\\[1.2em]&+\left(\dfrac{-3\times(-4)\times(-5)\times(-6)}{1\times2\times3\times4}(-7x)^{4}\right)+...\\[1.2em]&=1+21x+\left(\dfrac{12}{2}\times49x^{2}\right)+\left(\dfrac{-60}{6}\times(-343)x^{3}\right)\\[1.2em]&+\left(\dfrac{360}{24}\times2401x^{4}\right)+...\\[1.2em]&=1+21x+(6\times49x^{2})+(10\times343x^{3})+(15\times2401x^{4})\\[1.2em]&+...\\[1.2em]&=1+21x+294x^{2}+3430x^{3}+36015x^{4}+...\end{aligned}

 

Use x=0.01

 

(1-7\times0.01)^{-3}=1+(21\times0.01)+(294\times0.01^{2})+(3430\times0.01^{3})+(36015\times0.01^{4})+...

 

(1-0.07)^{-3}=1+0.21+(294\times0.0001)+(3430\times0.000001)+(36015\times0.00000001)+...

 

0.93^{-3}=1+0.21+0.0294+0.00343+0.00036015+...

 

\begin{aligned}\dfrac{1}{0.93^{3}}&=1+0.21+0.0294+0.00343+0.00036015+...\\[1.2em]&=1.24319015\end{aligned}
MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Additional Resources

MME

Exam Tips Cheat Sheet

A Level
MME

Formula Booklet

A Level

More Binomial Expansions Worksheet and Example Questions

Related Topics

MME

Partial Fractions

A Level
MME

Binomial Expansion

A Level
MME

Infinite Series Binomial Expansions

A Level