

Pure

Arithmetic Series

$$S_n = \frac{1}{2}n(a+l)$$

$$S_n = \frac{1}{2}n(2a + (n-1)d)$$

Geometric Series

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1 - r} \text{ for } |r| < 1$$

Binomial Expansion

$$(a+b)^{n} = a^{n} + {^{n}C_{1}}a^{n-1}b + {^{n}C_{2}}a^{n-2}b^{2} + \dots + {^{n}C_{r}}a^{n-r}b^{r} + \dots + b^{n}$$

where
$$(n \in \mathbb{N})$$
 and ${}^n\mathcal{C}_r = \binom{n}{r} = \frac{n!}{r! (n-r)!}$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} + \dots$$

for $|x| < 1, n \in \mathbb{R}$

Curved Surface Area

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Exponentials and Logarithms

$$\log_a(x) \frac{\log_b(x)}{\log_b(a)}$$

$$e^{x\ln(a)} = a^x$$

Trigonometric Identities

$$\sin(A \pm B) \equiv \sin(A)\cos(B) \pm \cos(A)\sin(B)$$
$$\cos(A \pm B) \equiv \cos(A)\cos(B) \mp \sin(A)\sin(B)$$

$$\tan(A \pm B) \equiv \frac{\tan(A) \pm \tan(B)}{1 \mp \tan(A) \tan(B)} \qquad \left(A \pm B \neq \left(k + \frac{1}{2}\right)\pi\right)$$

$$\sin(A) \pm \sin(B) = 2 \sin\left(\frac{A \pm B}{2}\right) \cos\left(\frac{A \mp B}{2}\right)$$

$$\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\cos(A) - \cos(B) = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Small Angle Approximations

$$\sin(\theta) \approx \theta$$

$$\cos(\theta) \approx 1 - \frac{1}{2}\theta^2$$

$$tan(\theta) \approx \theta$$

Differentiation

First principles:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Quotient rule:
$$\frac{d}{dx} \left(\frac{u(x)}{v(x)} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

f(x)	f'(x)
tan(kx)	$k sec^2(kx)$
sec(kx)	$k \operatorname{sec}(kx) \operatorname{tan}(kx)$
$\cot(kx)$	$-k \operatorname{cosec}^2(kx)$
cosec(kx)	$-k \operatorname{cosec}(kx) \operatorname{cot}(kx)$

Integration

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int f'(x) (f(x))^n dx = \frac{1}{n+1} (f(x))^{n+1} + c$$

Integration by parts: $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$

f(x)	$\int f(x) dx$
$\sec^2(kx)$	$\frac{1}{k}\tan(kx) + c$
tan(kx)	$\frac{1}{k}\ln \sec(kx) + c$
$\cot(kx)$	$\frac{1}{k}\ln \sin(kx) + c$
$\csc(kx)$	$-\frac{1}{k}\ln \operatorname{cosec}(kx) + \operatorname{cot}(kx) + c$ $\frac{1}{k}\ln\left \tan\left(\frac{1}{2}kx\right)\right + c$
sec(kx)	$-\frac{1}{k}\ln \sec(kx) + \tan(kx) + c$ $\frac{1}{k}\ln\left \tan\left(\frac{1}{2}kx + \frac{\pi}{4}\right)\right + c$

Numerical Methods

Trapezium Rule: $\int_a^b y \ dx = \frac{1}{2}h(y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1}))$ where $h = \frac{b-a}{n}$

Newton-Raphson iteration for solving f(x)=0 is $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$

Statistics

Measures of Variation

Interquartile Range = $IQR = Q_3 - Q_1$

$$S_{xx} = \sum (x_i - \bar{x})^2 = \left(\sum x_i^2\right) - \frac{(\sum x_i)^2}{n}$$

Standard deviation = $\sqrt{\text{variance}}$

$$\sigma = \sqrt{\frac{S_{xx}}{n}}$$

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \bar{x}^2}$$

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$$

$$\sigma = \sqrt{\frac{\sum f(x - \bar{x})^2}{\sum f}}$$

$$\sigma = \sqrt{\frac{\sum f x^2}{\sum f} - \bar{x}^2}$$

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B|A)$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A') = 1 - P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$$

Independent Events

$$P(B|A) = P(B)$$

$$P(A|B) = P(A)$$

$$P(A \cap B) = P(A)P(B)$$

Binomial Distribution

If
$$X \sim B(n, p)$$
, then:

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

$$\bar{X} = np$$

$$Var(X) = np(1-p)$$

Normal Distribution

If
$$X \sim N(\mu, \sigma^2)$$
, then:

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$

Mechanics

Motion in a Straight Line

$$v = u + at$$

$$s = \frac{1}{2}(u+v)t$$

$$s = ut + \frac{1}{2}at^2$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Motion in Two Dimensions

$$\mathbf{v} = \mathbf{u} + \mathbf{a}t$$

$$\mathbf{s} = \frac{1}{2}(\mathbf{u} + \mathbf{v})t$$

$$\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$$

$$\mathbf{s} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$$