Binomial Expansion

A LevelAQAEdexcelOCR

Binomial Expansion Revision

Binomial Expansion

Binomial expansion uses binomial coefficients to expand two terms in brackets of the form (ax+b)^{n}. When n is a positive whole number the expansion is finite. When n is not, the expansion is infinite.

A LevelAQAEdexcelOCR

Pascal’s Triangle

Pascal’s triangle is made by putting 1s down the sides, then every number comes from adding together the two above it.

The numbers on the nth row are the coefficients of (1+x)^{n}

(1+x)^{0}=1

(1+x)^{1}=1+x

(1+x)^{2}=1+2x+x^{2}

(1+x)^{3}=1+3x+3x^{2}+x^{3}

(1+x)^{4}=1+4x+6x^{2}+4x^{3}+x^{4}

and so on.

A LevelAQAEdexcelOCR

Binomial Coefficients

The binomial coefficient \begin{pmatrix}n\\m\end{pmatrix}=\dfrac{n!}{m!(n-m)!} where m and n are whole numbers and n>m. We can also write them as \text{}^{n}C_{m}.

The binomial coefficients are the same as the numbers in Pascal’s triangle.

This means we can write our expansion as:

(1+x)^{n}=\begin{pmatrix}n\\0\end{pmatrix}+\begin{pmatrix}n\\1\end{pmatrix}x+\begin{pmatrix}n\\2\end{pmatrix}x^{2}+...+\begin{pmatrix}n\\n-1\end{pmatrix}x^{n-1}+\begin{pmatrix}n\\n\end{pmatrix}x^{n}

A LevelAQAEdexcelOCR

General Binomial Expansion Formula

So far we have only seen how to expand (1+x)^{n}, but ideally we want a way to expand more general things, of the form (a+b)^{n}. In this expansion, the mth term has powers a^{m}b^{n-m}. We can use this, along with what we know about binomial coefficients, to give the general binomial expansion formula.

(a+b)^{n}=\begin{pmatrix}n\\0\end{pmatrix}a^{n}+\begin{pmatrix}n\\1\end{pmatrix}a^{n-1}b+\begin{pmatrix}n\\2\end{pmatrix}a^{n-2}b^{2}+...+\begin{pmatrix}n\\m\end{pmatrix}a^{m}b^{n-m}+...+\begin{pmatrix}n\\n-1\end{pmatrix}ab^{n-1}+\begin{pmatrix}n\\n\end{pmatrix}b^{n}

A LevelAQAEdexcelOCR
A LevelAQAEdexcelOCR

Example 1: Binomial Expansion

Expand (1+2x)^{2}

[2 marks]

(1+2x)^{2}=\begin{pmatrix}2\\0\end{pmatrix}1^{2}+\begin{pmatrix}2\\1\end{pmatrix}1\times2x+\begin{pmatrix}2\\2\end{pmatrix}(2x)^{2}

 

Find the binomial coefficients:

 

\begin{pmatrix}2\\0\end{pmatrix}=1

 

\begin{pmatrix}2\\1\end{pmatrix}=2

 

\begin{pmatrix}2\\2\end{pmatrix}=1

 

Substitute binomial coefficients into equation:

 

\begin{aligned}(1+2x)^{2}&=1\times1^{2}+2\times1\times2x+1\times(2x)^{2}\\[1.2em]&=1\times1+2\times2x+1\times4x^{2}\\[1.2em]&=1+4x+4x^{2}\end{aligned}

 

A LevelAQAEdexcelOCR

Example 2: Finding Coefficients

Find the coefficient of x^{3} in (x+8)^{6}.

[2 marks]

x^{3} term is \begin{pmatrix}6\\3\end{pmatrix}x^{3}8^{6-3}

 

\begin{pmatrix}6\\3\end{pmatrix}=20

 

8^{6-3}=8^{3}=512

 

x^{3} term is 512\times20x^{3}

 

x^{3} term is 10240x^{3}

 

Coefficient of x^{3} is 10240

A LevelAQAEdexcelOCR

Binomial Expansion Example Questions

Question 1: What is the eighth row of Pascal’s triangle?

(Hint: The triangle pictured on this page goes up to row seven.)

[2 marks]

A Level AQAEdexcelOCR

1s down the sides.

1+6=7 so 7 is the next number in.

6+15=21 so 21 is the next number in.

15+20=35 so 35 is the next number in.

So the whole row is:

1,7,21,35,35,21,7,1
MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 2: Expand \left(\dfrac{1}{4}-2x\right)^{4}

[5 marks]

A Level AQAEdexcelOCR
\left(\dfrac{1}{4}-2x\right)^{4}=\begin{pmatrix}4\\0\end{pmatrix}(-2x)^{4}+\begin{pmatrix}4\\1\end{pmatrix}\dfrac{1}{4}(-2x)^{3}+\begin{pmatrix}4\\2\end{pmatrix}\left(\dfrac{1}{4}\right)^{2}(-2x)^{2}+\begin{pmatrix}4\\3\end{pmatrix}\left(\dfrac{1}{4}\right)^{3}(-2x)+\begin{pmatrix}4\\4\end{pmatrix}\left(\dfrac{1}{4}\right)^{4}

 

\begin{pmatrix}4\\0\end{pmatrix}=1

 

\begin{pmatrix}4\\1\end{pmatrix}=4

 

\begin{pmatrix}4\\2\end{pmatrix}=6

 

\begin{pmatrix}4\\3\end{pmatrix}=4

 

\begin{pmatrix}4\\1\end{pmatrix}=1

 

\left(\dfrac{1}{4}-2x\right)^{4}=\big( 1\times(-2x)^{4}\big) +\big( 4\times\dfrac{1}{4}(-2x)^{3}\big) +\big( 6\times\left(\dfrac{1}{4}\right)^{2}(-2x)^{2}\big) +\big( 4\times\left(\dfrac{1}{4}\right)^{3}(-2x)\big) +\big( 1\times\left(\dfrac{1}{4}\right)^{4}\big)

 

\left(\dfrac{1}{4}-2x\right)^{4}=\big( 1\times16x^{4}\big) +\big( 4\times\dfrac{1}{4}\times(-8)x^{3}\big) +\big( 6\times\dfrac{1}{16}\times4x^{2}\big) +\big( 4\times\dfrac{1}{64}\times(-2)x\big) +\big( 1\times\dfrac{1}{256}\big)

 

\left(\dfrac{1}{4}-2x\right)^{4}=16x^{4}-8x^{3}+\dfrac{24}{16}x^{2}-\dfrac{8}{64}x+\dfrac{1}{256}

 

\left(\dfrac{1}{4}-2x\right)^{4}=16x^{4}-8x^{3}+\dfrac{3}{2}x^{2}-\dfrac{1}{8}x+\dfrac{1}{256}
MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 3: What is the coefficient of x^{4} in (5x-2)^{9}?

[3 marks]

A Level AQAEdexcelOCR

x^{4} term is \begin{pmatrix}9\\4\end{pmatrix}(5x)^{4}(-2)^{5}=-\begin{pmatrix}9\\4\end{pmatrix}5^{4}x^{4}2^{5}

 

\begin{pmatrix}9\\4\end{pmatrix}=126

 

5^{4}=625

 

2^{5}=32

 

x^{3} coefficient is -126\times625\times32=-2520000

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 4: Find p such that the x^{2} coefficient in \left(\dfrac{2}{3}x+p\right)^{3} is 4.

 

[3 marks]

A Level AQAEdexcelOCR

x^{2} coefficient is \begin{pmatrix}3\\2\end{pmatrix}\left(\dfrac{2}{3}\right)^{2}p

 

\begin{pmatrix}3\\2\end{pmatrix}=3

 

\left(\dfrac{2}{3}\right)^{2}=\dfrac{4}{9}

 

Hence, 3\times\dfrac{4}{9}\times p=4

 

\dfrac{4}{3}p=4

 

p=4\times\dfrac{3}{4}

 

p=3
MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Additional Resources

MME

Exam Tips Cheat Sheet

A Level
MME

Formula Booklet

A Level

Binomial Expansion Worksheet and Example Questions