AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C1 Polynomials (Answers)

Name:

M M E
 Mathsmadeeasy.co.uk

Total Marks: /87

1. $x-2) \frac{x^{2}+4 x+1}{x^{3}+2 x^{2}-7 x-2}$

$$
\begin{array}{r}
-\frac{x^{3}+2 x^{2}}{4 x^{2}}-7 x \\
-4 x^{2}+8 x \\
\hline x-2 \\
-x+2 \\
\hline
\end{array}
$$

and so the answer is $x^{2}+4 x+1$.
2. 53.
3. $k=2$.
4. Factorise fully the following polynomials. You may need to use the factor theorem:
(a) $x(x+1)^{2}$
(b) $(x-1)(x-2)(x-3)$.
(c) $(x-2)(x-1)^{2}$.
(d) $(2 x-1)(x+1)(x+3)$.
(e) $(x-1)^{2}(x+1)^{2}$.
5. Solve the following equations. Hint: to save time, use your answers from the previous question:
(a) $x=0$ or $x=-1$.
(b) $x=1$ or $x=2$ or $x=3$.
(c) $x=-3$ or $x=-1$ or $x=\frac{1}{2}$.
6. Consider the function $f(x)=a x^{3}+b x^{2}+27 x-10$, where a and b are unknown coefficients:
(a) $a=6$ and $b=-23$.
(b) $f(x)=(6 x-5)(x-1)(x-2)$.
(c) $x=\frac{5}{6}$ or $x=1$ or $x=2$.
7. Sketch the following functions, clearly indicating the points of any intersections with the axes:
(a)

Figure 1: $y=(x-1)(x-2)(x-3)$
(b)

Figure 2: $y=-(x-1)(x-2)(x-3)$
(c)

Figure 3: $y=(x-1)^{2}(x-2)$
(d)

Figure 4: $y=x(2 x-3)(x-1)$
8. Expand the following expressions. Hint: use Pascal's triangle and binomial expansion:
(a) $x^{4}+4 x^{3}+6 x^{2}+4 x+1$.
(b) $x^{3}+6 x^{2}+12 x+8$.
(c) $16 x^{4}+96 x^{3}+216 x^{2}+216 x+81$.
(d) $8 x^{4}+28 x^{3}+30 x^{2}+13 x+2$.
9. Evaluate the following binomial coefficients:
(a) 1 .
(b) 5 .
(c) 3 .
(d) 4 .
(e) 10 .
(f) 1 .
(g) 3 .
(h) 4 .
(i) 1 .
10. 8.
11. 5103.
12. 30375.
13. To find the coefficient of x^{3} in the expansion of $(2-x)^{6}(x-3)$ we first must think about how we could get x^{3} terms in the final expansion. Cearly, we need to find the x^{2} and x^{3} terms in the expansion of $(2-x)^{6}$. The reason for this is that if we expanded $(2-x)^{6}$ then the only way we can generate x^{3} terms when we multiply by $(x-3)$ is by an x^{2} term multiplied by the x or an x^{3} term multiplied by the -3 term. Since we are doing an expansion to the power 6 , we need the $6^{\text {th }}$ row of Pascal's triangle:

$$
\begin{array}{lllllll}
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}
$$

The x^{2} term in this expansion is: $\quad 15 \times(2)^{4} \times(-x)^{2}=240 x^{2}$.
And the x^{3} term is:

$$
20 \times(2)^{3} \times(-x)^{3}=-160 x^{3} .
$$

In the final multiplication we x^{3} terms by: $240 x^{2} \times x=240 x^{3}$, and: $\quad-160 x^{3} \times(-3)=480 x^{3}$,

And so the coefficient of the x^{3} term is: $\quad 240+480=720$.

