

1.
$$\begin{array}{r} x^{2} + 4x + 1 \\ x - 2 \end{array} \xrightarrow{x^{3} + 2x^{2} - 7x - 2} \\ - x^{3} + 2x^{2} \\ \hline 4x^{2} - 7x \\ - 4x^{2} + 8x \\ \hline x - 2 \\ - x + 2 \\ \hline 0 \end{array}$$

and so the answer is $x^2 + 4x + 1$.

[2]

2.53.

[2]

[3]

[2]

[2]

3. k = 2.

- 4. Factorise fully the following polynomials. You may need to use the factor theorem:
 - (a) $x(x+1)^2$ [2] (b) (x-1)(x-2)(x-3). [3]
 - (c) $(x-2)(x-1)^2$. [3]
 - (d) (2x-1)(x+1)(x+3). [3]
 - (e) $(x-1)^2(x+1)^2$.

5. Solve the following equations. *Hint: to save time, use your answers from the previous question:*

(a) $x = 0$ or $x = -1$.	[2]
(b) $x = 1$ or $x = 2$ or $x = 3$.	[3]

(c) x = -3 or x = -1 or $x = \frac{1}{2}$. [3]

6. Consider the function $f(x) = ax^3 + bx^2 + 27x - 10$, where a and b are unknown coefficients:

(a) $a = 6$ and $b = -23$.	[3]

(b) f(x) = (6x - 5)(x - 1)(x - 2). [3]

(c)
$$x = \frac{5}{6}$$
 or $x = 1$ or $x = 2$.

7. Sketch the following functions, clearly indicating the points of any intersections with the axes:

Page 3

Figure 2: y = -(x - 1)(x - 2)(x - 3)

∔-1

<u>+-2</u>

(c)

[2]

[2]

8. Expand the following expressions. *Hint: use Pascal's triangle and binomial expansion:*

(a) $x^4 + 4x^3 + 6x^2 + 4x + 1$.	[2]
(b) $x^3 + 6x^2 + 12x + 8$.	[2]
(c) $16x^4 + 96x^3 + 216x^2 + 216x + 81$.	[2]
(d) $8x^4 + 28x^3 + 30x^2 + 13x + 2$.	[3]
9. Evaluate the following binomial coefficients:	
(a) 1.	[2]
(b) 5.	[2]
(c) 3.	[2]
(d) 4.	[2]
(e) 10.	[2]
(f) 1.	[2]
(g) 3.	[2]
(h) 4.	[2]
(i) 1.	[2]
10. 8.	[3]
	[9]

11. 5103.

13. To find the coefficient of x^3 in the expansion of $(2-x)^6(x-3)$ we first must think about how we could get x^3 terms in the final expansion. Cearly, we need to find the x^2 and x^3 terms in the expansion of $(2-x)^6$. The reason for this is that if we expanded $(2-x)^6$ then the only way we can generate x^3 terms when we multiply by (x-3) is by an x^2 term multiplied by the x or an x^3 term multiplied by the -3term. Since we are doing an expansion to the power 6, we need the 6^{th} row of Pascal's triangle:

	1	6	15	20	15	6	1			
The x^2 term in this expansion is: And the x^3 term is:	2	$15 \times 0 \times 10^{-10}$	$(2)^4 > (2)^3 \times$	< (-x)	$)^2 = 2^3$ $)^3 = -$	$240x^2$	x^{2} . x^{3} .			
In the final multiplication we x^3 terms by: $240x^2 \times x = 240x^3$, and: $-160x^3 \times (-3) = 480x^3$,										
And so the coefficient of the x^3 ter:	m is	:	240 -	- 480	= 720).				

[4]

[4]

^{12. 30375.}