Back to GCSE Maths Revision Home

Column Vectors

GCSELevel 4-5AQACambridge iGCSEEdexcelEdexcel iGCSEOCR

Column Vectors Revision

Column Vectors

A vector is something that has both a magnitude and direction. On diagrams they are denoted by an arrow, where the length tells us the magnitude and the arrow tells us the direction.

Vectors are often split up into two parts, which we call components: An x component, which moves left or right, and a y component, which moves up or down.

Make sure you are happy with the following topics before continuing:

Level 4-5GCSEAQAEdexcelOCRCambridge iGCSEEdexcel iGCSE
Column Vectors Diagram

What are Column Vectors?

A column vector splits the x and the y direction up, with x on top and y on bottom.

\begin{pmatrix}x\\y \end{pmatrix}

e.g. the vector \mathbf{a} goes 3 spaces to the right and 2 spaces up, so would be expressed as \begin{pmatrix}3\\2 \end{pmatrix}.

Column Vectors Diagram
Level 4-5GCSEAQAEdexcelOCRCambridge iGCSEEdexcel iGCSE

Adding and Subtracting Column Vectors

To add/subtract column vectors, we add/subtract the x and y values separately.

\begin{pmatrix}a\\b \end{pmatrix} + \begin{pmatrix}c\\d \end{pmatrix} = \begin{pmatrix}a + c\\b + d \end{pmatrix}

For example:

\begin{pmatrix}-3\\4\end{pmatrix}+\begin{pmatrix}5\\2\end{pmatrix}=\begin{pmatrix}2\\6\end{pmatrix}

\begin{pmatrix}6\\3\end{pmatrix}-\begin{pmatrix}2\\1\end{pmatrix}=\begin{pmatrix}4\\2\end{pmatrix}

Level 4-5GCSEAQAEdexcelOCRCambridge iGCSEEdexcel iGCSE

Multiplying Column Vectors

To multiply a column vector by a number, we multiply both values in the vector by that number, e.g.

5\times\begin{pmatrix}2\\-3\end{pmatrix}=\begin{pmatrix}10\\-15\end{pmatrix}

Level 4-5GCSEAQAEdexcelOCRCambridge iGCSEEdexcel iGCSE

Example: Working with Column Vectors

Let \mathbf{a}=\begin{pmatrix}3\\8\end{pmatrix} and \mathbf{b}=\begin{pmatrix}-7\\2\end{pmatrix}

Write 2\mathbf{a}+\mathbf{b} as a column vector.

[2 marks]

2\mathbf{a}+\mathbf{b}=2\begin{pmatrix}3\\8\end{pmatrix}+\begin{pmatrix}-7\\2\end{pmatrix}

2\mathbf{a}+\mathbf{b}=\begin{pmatrix}6\\16\end{pmatrix}+\begin{pmatrix}-7\\2\end{pmatrix}

2\mathbf{a}+\mathbf{b}=\begin{pmatrix}-1\\18\end{pmatrix}

Level 4-5GCSEAQAEdexcelOCRCambridge iGCSEEdexcel iGCSE

Column Vectors Example Questions

Question 1: Let \mathbf{a}=\begin{pmatrix}1\\5\end{pmatrix} and \mathbf{b}=\begin{pmatrix}2\\2\end{pmatrix} Write \mathbf{a}-\mathbf{b} as a column vector.

[2 marks]

Level 4-5GCSE AQAEdexcelOCRCambridge iGCSEEdexcel iGCSE

\mathbf{a}-\mathbf{b}=\begin{pmatrix}1\\5\end{pmatrix}-\begin{pmatrix}2\\2\end{pmatrix}

 

\mathbf{a}-\mathbf{b}=\begin{pmatrix}-1\\3\end{pmatrix}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 2: Let \mathbf{a}=\begin{pmatrix}2\\7\end{pmatrix} and \mathbf{b}=\begin{pmatrix}-5\\3\end{pmatrix}. Write 3\mathbf{a}-2\mathbf{b} as a column vector.

[2 marks]

Level 4-5GCSE AQAEdexcelOCRCambridge iGCSEEdexcel iGCSE

Firstly, to multiply \mathbf{a} by 3, we must multiply both of its components:

 

3\mathbf{a}=3\times\begin{pmatrix}2\\7\end{pmatrix}=\begin{pmatrix}6\\21\end{pmatrix}

 

Then, in order subtract 2\mathbf{b}, we must first multiply \mathbf{b} by 2.

 

2\mathbf{b}=2\times\begin{pmatrix}-5\\3\end{pmatrix}=\begin{pmatrix}-10\\6\end{pmatrix}

 

Thus the calculation is:

3\mathbf{a}-2\mathbf{b}=\begin{pmatrix}6\\21\end{pmatrix}-\begin{pmatrix}-10\\6\end{pmatrix}=\begin{pmatrix}16\\15\end{pmatrix}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 3: Let \mathbf{a}=\begin{pmatrix}6\\2\end{pmatrix} and \mathbf{b}=\begin{pmatrix}5\\-3\end{pmatrix} and \mathbf{c}=\begin{pmatrix}2\\1\end{pmatrix}. Write \mathbf{a}+2\mathbf{b}-\mathbf{c} as a column vector.

[2 marks]

Level 4-5GCSE AQAEdexcelOCRCambridge iGCSEEdexcel iGCSE

Firstly, to multiply \mathbf{b} by 2, we must multiply both of its components:

 

2\mathbf{b}=2\times\begin{pmatrix}5\\-3\end{pmatrix}=\begin{pmatrix}10\\-6\end{pmatrix}

 

Then, we can add \mathbf{a}  and  2\mathbf{b}:

 

\mathbf{a}+2\mathbf{b}=\begin{pmatrix}6\\2\end{pmatrix}+\begin{pmatrix}10\\-6\end{pmatrix}=\begin{pmatrix}16\\-4\end{pmatrix}

 

The final calculation is to subtract \mathbf{c}:

 

\mathbf{a}+2\mathbf{b}-\mathbf{c}=\begin{pmatrix}16\\-4\end{pmatrix}-\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}14\\-5\end{pmatrix}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Column Vectors Worksheet and Example Questions

Site Logo

(NEW) Column Vectors Exam Style Questions - MMe

Level 4-5GCSENewOfficial MME

Related Topics

MME

Coordinates and Ratios

Level 4-5Level 6-7KS3
MME

Direct and Inverse Proportion

Level 4-5Level 6-7KS3