A Level Maths Equations

A Level Maths Equations Revision

Pure

 

Arithmetic Series

S_{n} = \dfrac{1}{2}n(a + l)\\

 

S_{n} = \dfrac{1}{2}n(2a + (n - l)d)\\

 

Geometric Series

S_{n} = \dfrac{a(1 - r^n)}{1 - r}\\

 

S_{\infty} = \dfrac{a}{1 - r} for |r\ < 1\\

 

Binomial Expansion

(a + b)^n = a^n +  ^nC_1 a^{n-1} b +  ^nC_2 a^{n-2} b^2 + ... +   ^nC_r a^{n-r} b^r + ... + b^n

where (n \in \N) and ^nC_r = \begin{pmatrix}n\\r\end{pmatrix} = \dfrac{n!}{r (n-r)!}

(1 + x)^n = 1 + nx + \dfrac{n(n - 1)}{1\times2} x^2 + ... + \dfrac{n(n - 1) ... (n - r + 1)}{1\times2\times...\times r} + ...

for |x| < 1, n \in \R

 

Curved Surface Area 

Surface area of sphere = 4\pi r^2

Area of curved surface of cone = \pi r \times  slant height

 

Exponentials and Logarithms

\log_a (x) \dfrac{\log_b (x)}{\log_b (a)}\\

 

e^{x\ln{a}} = a^x

 

Exponentials and Logarithms

\sin(A\pm B)\equiv\sin(A)\cos(B)\pm\cos(A)\sin(B)\\

 

\cos(A\pm B)\equiv\cos(A)\cos(B)\mp\sin(A)\sin(B)\\

 

\tan(A\pm B)\equiv\dfrac{\tan(A)\pm\tan(B)}{1\mp\tan(A)\tan(B)}        (A\pm B\neq(K+\dfrac{1}{2})\pi)\\

 

\sin(A)\pm\sin(B)=2\sin(\dfrac{A\pm B}{2})\cos(\dfrac{A\mp B}{2})\\

 

\cos(A)+\cos(B)=2\cos(\dfrac{A+B}{2})\cos(\dfrac{A-B}{2})\\

 

\cos(A)-\cos(B)=-2\sin(\dfrac{A+B}{2})\sin(\dfrac{A-B}{2})\\

 

Small Angle Approximations

\sin(\theta)\approx\theta\\

 

\cos(\theta)\approx 1-\dfrac{1}{2}\theta ^2\\

 

\tan(\theta)\approx\theta\\

 

Differentiation

First principles: f'(x) = \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}\\

 

Quotient rule: \dfrac{d}{dx}\left(\dfrac{u(x)}{v(x)}\right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^2}

 

\textbf f(x) \textbf f'(x)
\tan(kx) k\sec^2(kx)
\sec(kx) k\sec(kx)\tan(kx)
\cot(kx) -k\cosec^2(kx)
\cosec(kx) -k\cosec(kx)\cot(kx)

 

Integration

\int u\dfrac{dv}{dx}dx = uv - \int v\dfrac{du}{dx}dx\\

 

\textbf f(x) \int \textbf f(x) dx
\sec^2(kx) \dfrac{1}{k}\tan(kx) + c
\tan(kx) \dfrac{1}{k}\ln |\sec(kx)|+ c
\cot(kx)  \dfrac{1}{k}\ln |\sin(kx)|+ c
\cosec(kx) -\dfrac{1}{k}\ln |\cosec(kx)|+\cot(kx)| + c \dfrac{1}{k}\ln |\tan(\dfrac{1}{2}kx)| + c
\sec(kx) -\dfrac{1}{k}\ln |\sec(kx)|+\tan(kx)| + c \dfrac{1}{k}\ln |\tan(\dfrac{1}{2}kx + \dfrac{\pi}{4})| + c

 

Numerical Methods

Trapezium rule: \int_{b}{a}y dx = \dfrac{1}{2} h (y_{0} + y_{n} + 2(y_{1} + y_{2} +...+ y_{n-1})) where h=\dfrac{b-a}{h}

 

Newton-Raphson iteration for solving f(x)=0 is x_{n+1}=x_{n} - \dfrac{f(x_{n})}{f'(x_{n})}

Statistics

 

Measures of Variation

Interquartile Range = IQR = Q_{3} - Q_{1}\\

S_{xx} = \sum (x_{i} - \bar{x})^2 = \left(\sum x_{i}^2\right) - \dfrac{(\sum x_{i})^2}{n}\\

 

Standard deviation =\sqrt{\text{variance}}\\

\sigma = \sqrt{\dfrac{S_{xx}}{n}}\\

 

\sigma = \sqrt{\dfrac{\sum x^2}{n} - \bar{x}^2}\\

 

\sigma = \sqrt{\dfrac{\sum (x-\bar{x})^2}{n}}\\

 

\sigma = \sqrt{\dfrac{\sum f(x-\bar{x})^2}{\sum f}}\\

 

\sigma = \sqrt{\dfrac{\sum fx^2}{\sum f} - \bar{x}^2}\\

 

Probability

P(A\cup B)=P(A)+P(B)-P(A\cap B)\\

 

P(A\cap B)=P(A)P(B|A)\\

 

P(B|A)=\dfrac{P(A\cap B)}{P(A)}\\

 

P(A')=1-P(A)\\

 

P(A|B)=\dfrac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A')P(A')}\\

 

Independent Events

P(B|A)=P(B)\\

 

P(A|B)+P(A)\\

 

P(A\cap B)=P(A)P(B)\\

 

Binomial Distribution

If X\sim B(n,p), then:

P(X=x) = \begin{pmatrix}n\\x\end{pmatrix} p^x(q-p)^{n-x}\\

 

\bar{X} = np\\

 

Var(X)=np(1-p)\\

 

Normal Distribution

If X\sim N(\mu ,\sigma ^2), then:

 

\bar{X}\sim N\left(\mu , \dfrac{\sigma ^2}{n}\right)

 

\dfrac{\bar{X} - \mu }{\dfrac{\sigma }{\sqrt{n}}} \sim  N(0,1)

Mechanics

 

Motion in a Straight Line

v=u+at\\

 

s=\dfrac{1}{2}(u+v)t\\

 

s=ut+\dfrac{1}{2}at^2\\

 

s=vt-\dfrac{1}{2}at^2\\

 

v^2=u^2+2as\\

 

Motion in Two Dimensions

\textbf v=\textbf u+\textbf at\\

 

\textbf s=\dfrac{1}{2}(\textbf u+\textbf v)t\\

 

\textbf s=\textbf ut+\dfrac{1}{2}\textbf at^2\\

 

\textbf s=\textbf vt-\dfrac{1}{2}\textbf at^2\\

 

Newton’s Laws of Motion

F = ma

 

Friction

F \leq \mu R where \mu is the coefficient of friction

Additional Resources

MME

Exam Tips Cheat Sheet

A LevelAS Level
MME

Formula Booklet

A LevelAS Level