A Level Maths Equations
A Level Maths Equations Revision
Pure
Arithmetic Series
S_{n} = \dfrac{1}{2}n(a + l)\\S_{n} = \dfrac{1}{2}n(2a + (n - l)d)\\
Geometric Series
S_{n} = \dfrac{a(1 - r^n)}{1 - r}\\
S_{\infty} = \dfrac{a}{1 - r} for |r\ < 1\\
Binomial Expansion
(a + b)^n = a^n + ^nC_1 a^{n-1} b + ^nC_2 a^{n-2} b^2 + ... + ^nC_r a^{n-r} b^r + ... + b^nwhere (n \in \N) and ^nC_r = \begin{pmatrix}n\\r\end{pmatrix} = \dfrac{n!}{r (n-r)!}
(1 + x)^n = 1 + nx + \dfrac{n(n - 1)}{1\times2} x^2 + ... + \dfrac{n(n - 1) ... (n - r + 1)}{1\times2\times...\times r} + ...for |x| < 1, n \in \R
Curved Surface Area
Surface area of sphere = 4\pi r^2
Area of curved surface of cone = \pi r \times slant height
Exponentials and Logarithms
\log_a (x) \dfrac{\log_b (x)}{\log_b (a)}\\e^{x\ln{a}} = a^x
Exponentials and Logarithms
\sin(A\pm B)\equiv\sin(A)\cos(B)\pm\cos(A)\sin(B)\\\cos(A\pm B)\equiv\cos(A)\cos(B)\mp\sin(A)\sin(B)\\
\tan(A\pm B)\equiv\dfrac{\tan(A)\pm\tan(B)}{1\mp\tan(A)\tan(B)} (A\pm B\neq(K+\dfrac{1}{2})\pi)\\
\sin(A)\pm\sin(B)=2\sin(\dfrac{A\pm B}{2})\cos(\dfrac{A\mp B}{2})\\
\cos(A)+\cos(B)=2\cos(\dfrac{A+B}{2})\cos(\dfrac{A-B}{2})\\
\cos(A)-\cos(B)=-2\sin(\dfrac{A+B}{2})\sin(\dfrac{A-B}{2})\\
Small Angle Approximations
\sin(\theta)\approx\theta\\\cos(\theta)\approx 1-\dfrac{1}{2}\theta ^2\\
\tan(\theta)\approx\theta\\
Differentiation
First principles: f'(x) = \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}\\
Quotient rule: \dfrac{d}{dx}\left(\dfrac{u(x)}{v(x)}\right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^2}
\textbf f(x) | \textbf f'(x) |
\tan(kx) | k\sec^2(kx) |
\sec(kx) | k\sec(kx)\tan(kx) |
\cot(kx) | -k\cosec^2(kx) |
\cosec(kx) | -k\cosec(kx)\cot(kx) |
Integration
\int u\dfrac{dv}{dx}dx = uv - \int v\dfrac{du}{dx}dx\\
\textbf f(x) | \int \textbf f(x) dx |
\sec^2(kx) | \dfrac{1}{k}\tan(kx) + c |
\tan(kx) | \dfrac{1}{k}\ln |\sec(kx)|+ c |
\cot(kx) | \dfrac{1}{k}\ln |\sin(kx)|+ c |
\cosec(kx) | -\dfrac{1}{k}\ln |\cosec(kx)|+\cot(kx)| + c \dfrac{1}{k}\ln |\tan(\dfrac{1}{2}kx)| + c |
\sec(kx) | -\dfrac{1}{k}\ln |\sec(kx)|+\tan(kx)| + c \dfrac{1}{k}\ln |\tan(\dfrac{1}{2}kx + \dfrac{\pi}{4})| + c |
Numerical Methods
Trapezium rule: \int_{b}{a}y dx = \dfrac{1}{2} h (y_{0} + y_{n} + 2(y_{1} + y_{2} +...+ y_{n-1})) where h=\dfrac{b-a}{h}
Newton-Raphson iteration for solving f(x)=0 is x_{n+1}=x_{n} - \dfrac{f(x_{n})}{f'(x_{n})}
Statistics
Measures of Variation
Interquartile Range = IQR = Q_{3} - Q_{1}\\
S_{xx} = \sum (x_{i} - \bar{x})^2 = \left(\sum x_{i}^2\right) - \dfrac{(\sum x_{i})^2}{n}\\
Standard deviation =\sqrt{\text{variance}}\\
\sigma = \sqrt{\dfrac{S_{xx}}{n}}\\\sigma = \sqrt{\dfrac{\sum x^2}{n} - \bar{x}^2}\\
\sigma = \sqrt{\dfrac{\sum (x-\bar{x})^2}{n}}\\
\sigma = \sqrt{\dfrac{\sum f(x-\bar{x})^2}{\sum f}}\\
\sigma = \sqrt{\dfrac{\sum fx^2}{\sum f} - \bar{x}^2}\\
Probability
P(A\cup B)=P(A)+P(B)-P(A\cap B)\\P(A\cap B)=P(A)P(B|A)\\
P(B|A)=\dfrac{P(A\cap B)}{P(A)}\\
P(A')=1-P(A)\\
P(A|B)=\dfrac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A')P(A')}\\
Independent Events
P(B|A)=P(B)\\P(A|B)+P(A)\\
P(A\cap B)=P(A)P(B)\\
Binomial Distribution
If X\sim B(n,p), then:
P(X=x) = \begin{pmatrix}n\\x\end{pmatrix} p^x(q-p)^{n-x}\\\bar{X} = np\\
Var(X)=np(1-p)\\
Normal Distribution
If X\sim N(\mu ,\sigma ^2), then:
\bar{X}\sim N\left(\mu , \dfrac{\sigma ^2}{n}\right)
\dfrac{\bar{X} - \mu }{\dfrac{\sigma }{\sqrt{n}}} \sim N(0,1)
Mechanics
Motion in a Straight Line
v=u+at\\s=\dfrac{1}{2}(u+v)t\\
s=ut+\dfrac{1}{2}at^2\\
s=vt-\dfrac{1}{2}at^2\\
v^2=u^2+2as\\
Motion in Two Dimensions
\textbf v=\textbf u+\textbf at\\\textbf s=\dfrac{1}{2}(\textbf u+\textbf v)t\\
\textbf s=\textbf ut+\dfrac{1}{2}\textbf at^2\\
\textbf s=\textbf vt-\dfrac{1}{2}\textbf at^2\\
Newton’s Laws of Motion
F = ma
Friction
F \leq \mu R where \mu is the coefficient of friction