| Surname       | Centre<br>Number | Candidate<br>Number |
|---------------|------------------|---------------------|
| First name(s) |                  | 0                   |



# **GCSE**

3300U50-1



# **MONDAY, 14 NOVEMBER 2022 - MORNING**

# MATHEMATICS UNIT 1: NON-CALCULATOR HIGHER TIER

1 hour 45 minutes

#### **ADDITIONAL MATERIALS**

The use of a calculator is not permitted in this examination. A ruler, a protractor and a pair of compasses may be required.

#### **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the additional page at the back of the booklet. Question numbers must be given for all work written on the additional page.

Take  $\pi$  as 3·14.

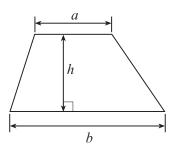
## INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

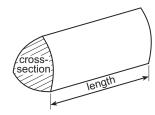
Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.


In question **10**, the assessment will take into account the quality of your organisation, communication and accuracy in writing.

| NOV223300U50101 |
|-----------------|


| For Examiner's use only |                 |                 |
|-------------------------|-----------------|-----------------|
| Question                | Maximum<br>Mark | Mark<br>Awarded |
| 1.                      | 5               |                 |
| 2.                      | 3               |                 |
| 3.                      | 3               |                 |
| 4.                      | 6               |                 |
| 5.                      | 5               |                 |
| 6.                      | 3               |                 |
| 7.                      | 4               |                 |
| 8.                      | 2               |                 |
| 9.                      | 4               |                 |
| 10.                     | 6               |                 |
| 11.                     | 6               |                 |
| 12.                     | 3               |                 |
| 13.                     | 3               |                 |
| 14.                     | 3               |                 |
| 15.                     | 4               |                 |
| 16.                     | 3               |                 |
| 17.                     | 3               |                 |
| 18.                     | 4               |                 |
| 19.                     | 3               |                 |
| 20.                     | 2               |                 |
| 21.                     | 5               |                 |
| Total                   | 80              |                 |

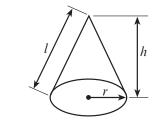
#### Formula List - Higher Tier

Area of trapezium =  $\frac{1}{2}(a+b)h$ 



Volume of prism = area of cross-section × length




Volume of sphere =  $\frac{4}{3}\pi r^3$ 

Surface area of sphere =  $4\pi r^2$ 



Volume of cone =  $\frac{1}{3}\pi r^2 h$ 

Curved surface area of cone =  $\pi r l$ 




In any triangle ABC

Sine rule 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

**Cosine rule**  $a^2 = b^2 + c^2 - 2bc \cos A$ 

Area of triangle =  $\frac{1}{2}ab \sin C$ 



# The Quadratic Equation

The solutions of  $ax^2 + bx + c = 0$  where  $a \ne 0$  are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

## **Annual Equivalent Rate (AER)**

AER, as a decimal, is calculated using the formula  $\left(1+\frac{i}{n}\right)^n-1$ , where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.



| <b>1.</b> In a group of 200 | people: |
|-----------------------------|---------|
|-----------------------------|---------|

- 105 people do not have black hair and do not wear glasses
  20 people have black hair and wear glasses
  70 people have black hair.

| (a) | Complete the Venn diagram below to show this information. The universal set, $\varepsilon$ , contains all 200 people. | [3] |
|-----|-----------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                       |     |
|     |                                                                                                                       |     |

ε Black hair Glasses

| (b) | One of these people is chosen at random. What is the probability that this person wears glasses? | [2] |
|-----|--------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                  |     |
|     |                                                                                                  |     |
|     |                                                                                                  |     |



2.

Triangle *ABC* is shown in the diagram below. Using only a ruler and a pair of compasses, construct an accurate drawing of triangle *ABC*. Side *AC* has been drawn for you.

All construction lines and arcs must be shown.

[3]

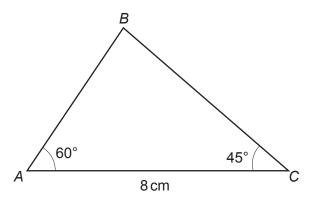
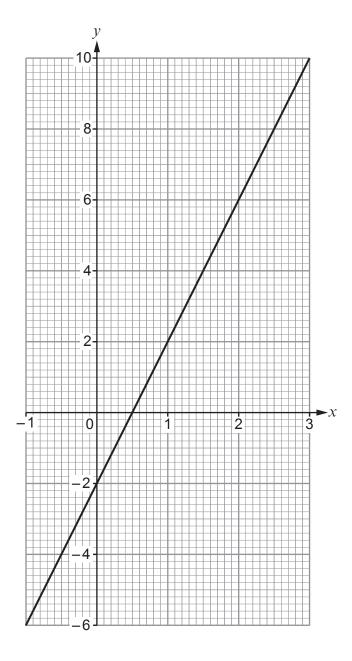



Diagram not drawn to scale

Α C 8 cm




| 2  |  |
|----|--|
| 5  |  |
| 5  |  |
| Ö  |  |
| 33 |  |

| LXPI       | ess 1575 as a product of its prime factors in index form.  | [3] |
|------------|------------------------------------------------------------|-----|
| •••••      |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
| Simp       | lify the following expressions.                            |     |
|            | lify the following expressions. $2 p^3 q \times 3 p^4 q^7$ | [2] |
| (a)        |                                                            | [2] |
| (a)        | $2p^3q \times 3p^4q^7$                                     | [2] |
| (a)<br>(b) | $2p^3q \times 3p^4q^7$                                     |     |
| (a)<br>(b) | $2p^{3}q \times 3p^{4}q^{7}$ $7a(a+5)-2(3a^{2}+6a-7)$      |     |
| (a)<br>(b) | $2p^{3}q \times 3p^{4}q^{7}$ $7a(a+5)-2(3a^{2}+6a-7)$      |     |
| (a)<br>(b) | $2p^{3}q \times 3p^{4}q^{7}$ $7a(a+5)-2(3a^{2}+6a-7)$      |     |
| (a)<br>(b) | $2p^{3}q \times 3p^{4}q^{7}$ $7a(a+5)-2(3a^{2}+6a-7)$      | [4] |



**5.** The diagram below shows the graph of a straight line for values of x from -1 to 3.



| (a) | (i)   | Write down the gradient of the line above. | [1] |
|-----|-------|--------------------------------------------|-----|
|     | ••••• |                                            |     |



| (b) Sh | now that the lines $y = 3x - 8  \text{and}  2y - 6x = 23$ |     |
|--------|-----------------------------------------------------------|-----|
| are    | e parallel to each other.                                 | [2] |
|        |                                                           |     |
|        |                                                           |     |
|        |                                                           |     |



Turn over.

6. In the following formulae, each measurement of length is represented by a letter. Consider the dimensions implied by each formula. For each case, write down whether the formula could be for a length, an area, a volume or none of these.

The first one has been done for you.

[3]

| Formul | a |
|--------|---|
|--------|---|

Formula could be for

$$7a^3-abc$$

$$7ab - 5b^2 + \frac{a^2b}{c}$$

$$5abc - 6bc + b^2$$

$$4a^2b + 4b^2a$$

$$3a + 8b + 2c$$

$$a^2-abc$$

| (a) | Calculate the value of $(3 \times 10^4) \div (6 \times 10^{-3})$ . Give your answer in standard form.  | [2] |
|-----|--------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                        |     |
|     |                                                                                                        |     |
| (b) | Calculate the value of $(4\cdot78\times10^4)+(1\cdot5\times10^2)$ . Give your answer in standard form. | [2] |
|     |                                                                                                        |     |
|     |                                                                                                        |     |
|     |                                                                                                        |     |
|     |                                                                                                        |     |
|     |                                                                                                        |     |
|     |                                                                                                        |     |



© WJEC CBAC Ltd. (3300U50-1)

Turn over.

Which complete method, using Pythagoras's Theorem, can be used to find x? 8. Circle your answer.

[1]

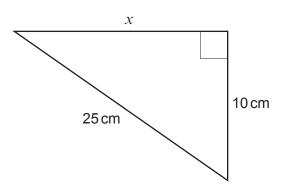



Diagram not drawn to scale

$$x = 25^2 + 10^2$$

$$x = \sqrt{25^2 + 10^2}$$
  $x = 25^2 - 10^2$ 

$$x = 25^2 - 10^2$$

$$x = \sqrt{25^2 - 10^2}$$

$$x = \sqrt{(25-10)^2}$$

Which of the following calculations can be used to find y? (b) Circle your answer.

[1]

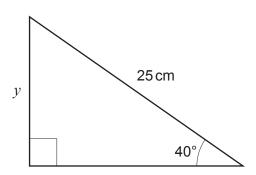



Diagram not drawn to scale

$$\sin 25^\circ = y \times 40$$

$$\sin 40^\circ = \frac{25}{y}$$

$$\sin 25^{\circ} = \frac{y}{40}$$

$$\sin 40^\circ = \frac{y}{25}$$

$$\sin 40^\circ = y \times 25$$

**9.** *P*, *Q* and *R* are points on the circumference of a circle with centre *O*.

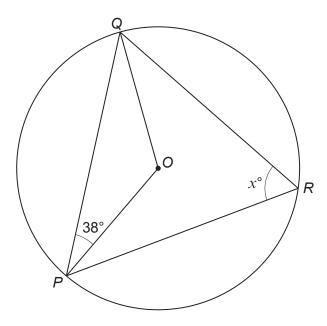



Diagram not drawn to scale

| You must state <b>all</b> the angle properties that you use. You must show all your working. | [4]             |
|----------------------------------------------------------------------------------------------|-----------------|
|                                                                                              | •••••           |
|                                                                                              |                 |
|                                                                                              |                 |
|                                                                                              | •••••           |
|                                                                                              | ······          |
|                                                                                              |                 |
|                                                                                              |                 |
|                                                                                              | · · · · · · · · |
|                                                                                              |                 |
|                                                                                              |                 |
|                                                                                              | ·····•          |
|                                                                                              |                 |
|                                                                                              |                 |



Calculate the value of x.

© WJEC CBAC Ltd. (3300U50-1) Turn over.

| 10. | In this question, you will be assessed on the quality of your organisation, communaccuracy in writing.                                                           | nication and |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
|     | On Monday morning, Twm picked $n$ apples from a tree. Ceri picked 5 times as many apples as Twm.                                                                 |              |  |  |  |  |  |  |
|     | On Monday afternoon, Twm picked 19 more apples.<br>Ceri gave 7 of her apples to Twm.                                                                             |              |  |  |  |  |  |  |
|     | Ceri still had more apples than Twm.                                                                                                                             |              |  |  |  |  |  |  |
|     | Write down an inequality in terms of $n$ to show the above information. Use your inequality to find the least possible number of apples Twm picked on Momorning. | onday        |  |  |  |  |  |  |
|     | You must show all your working.                                                                                                                                  | [4 + 2 OCW]  |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |
|     |                                                                                                                                                                  |              |  |  |  |  |  |  |



|    | <ul> <li>Given that y is directly proportional to x³ and that y = 108 when x = 3,</li> <li>(i) find an expression for y in terms of x.</li> </ul> |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-----|
|    | (i)                                                                                                                                               | find an expr   | ession for $y$ in terms of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or <i>x</i> .        |                      | [3] |
|    | •                                                                                                                                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | •••••                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | •                                                                                                                                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    |                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | ***********                                                                                                                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | • • • • • • • • • • • • • • • • • • • •                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | <b></b>                                                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | (ii)                                                                                                                                              | Use the exp    | ression you found in p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | part (i) to complete | the following table  | [2] |
|    | (11)                                                                                                                                              |                | recolori you rearia iii p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | var (i) to complete  | the following table. | [-] |
|    |                                                                                                                                                   | X              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                    |                      |     |
|    |                                                                                                                                                   |                | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 4000                 |     |
|    |                                                                                                                                                   | <i>y</i>       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 4000                 |     |
|    |                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | •••••                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | •                                                                                                                                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | ·····                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | •····                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | •••••                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    | •                                                                                                                                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    |                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
| h) | It ic I                                                                                                                                           | known that a i | s inversaly properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and to $f$           |                      |     |
| b) | Desc                                                                                                                                              | cribe what ha  | is <b>inversely</b> proportion ppens to $e$ when $f$ is defined as $f$ is defined as $f$ is defined as $f$ in the second seco | oubled.              |                      | [1] |
|    |                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |
|    |                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |     |



Examiner only **12.** Describe fully the **single** transformation that transforms shape A onto shape B. [3] 5 Α 2 В -3 -6 -8



**13.** In the following diagram, the lines *AC* and *BD* **bisect** each other.

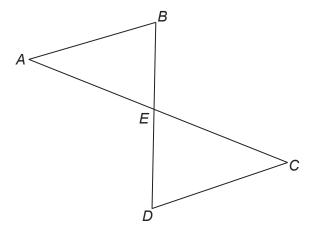
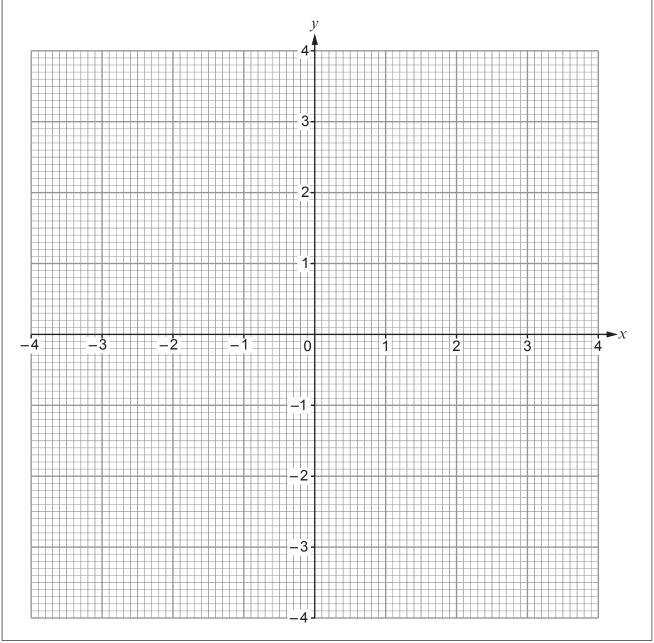



Diagram not drawn to scale


| Prove that triangles <i>ABE</i> and <i>CDE</i> are congruent.  You must state the condition of congruence. | [3]    |
|------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            | ······ |
|                                                                                                            |        |
|                                                                                                            |        |

**14.** Using the axes below, find the region which satisfies the following inequalities.

$$y \leqslant \frac{1}{2}x + 1$$
$$y + x \geqslant 0$$
$$x \leqslant 3$$

You must clearly indicate the region that represents your answer. [3]

.....

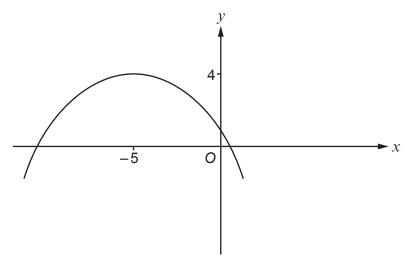


| 5. | (a)                                     | Express 0.654 as a fraction.   | [2] | ¬Ex |
|----|-----------------------------------------|--------------------------------|-----|-----|
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    | • • • • • • • • • • • • • • • • • • • • |                                |     |     |
|    | •••••                                   |                                |     |     |
|    |                                         |                                |     |     |
|    | •••••                                   |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         | 2                              |     |     |
|    | (b)                                     | Evaluate $27^{-\frac{2}{3}}$ . | [2] |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    | <u></u>                                 |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |
|    |                                         |                                |     |     |



|            |                                                                                                                             | ТΕх |
|------------|-----------------------------------------------------------------------------------------------------------------------------|-----|
| <b>)</b> . | A cone and a cylinder have equal volumes. The cone has a base radius of $r  \mathrm{cm}$ and a height of $h  \mathrm{cm}$ . |     |
|            | The cylinder has a base radius of $r$ cm and a height of $\frac{3}{2}r$ cm.                                                 |     |
|            | Find $h$ in terms of $r$ .<br>You must express your answer in its simplest form. [3]                                        | l l |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             | •   |
|            |                                                                                                                             |     |
|            |                                                                                                                             | -   |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             | •   |
|            |                                                                                                                             | •   |
|            |                                                                                                                             | -   |
|            |                                                                                                                             | -   |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |
|            |                                                                                                                             |     |




|     |                                                                            | Examiner only |
|-----|----------------------------------------------------------------------------|---------------|
| 17. | Evaluate the mean of the following three numbers:                          | 0,            |
|     | $\sqrt{20}$ $\left(\sqrt{5}\right)^3$ $11\sqrt{5}$                         |               |
|     | Express your answer in the form $a\sqrt{5}$ , where $a$ is an integer. [3] |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |
|     |                                                                            |               |



|    |                                                                                                                                  | _   |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|
| 3. | Ffion has some blue cards and some yellow cards. She takes 7 of the blue cards and 3 of the yellow cards and puts them in a box. |     |
|    | Ffion removes one card from the box at random and replaces it with <b>two</b> cards of the other colour.                         |     |
|    | Then she removes a second card from the box at random.                                                                           |     |
|    | Calculate the probability that the two cards that Ffion removed are of different colours.                                        | 4   |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  | ••• |
|    |                                                                                                                                  |     |
|    |                                                                                                                                  |     |
|    |                                                                                                                                  |     |
|    |                                                                                                                                  |     |
|    |                                                                                                                                  |     |
|    |                                                                                                                                  |     |

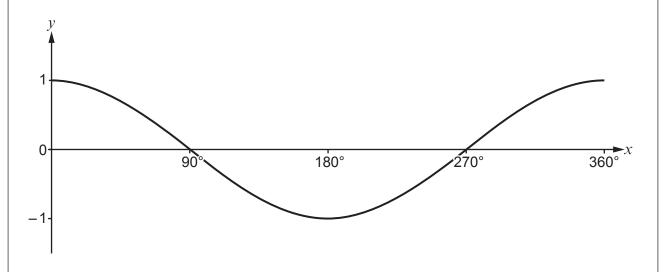


**19.** The highest point of a curve is called a maximum point. The diagram below shows a sketch of the curve with equation y = f(x). The maximum point of this curve has coordinates (–5, 4).



(a) For each of the following, write down the coordinates of the maximum point of the curve with the given equation.

$$(i) y = 2f(x)$$


(ii) 
$$y = f(x-7)$$
 [1]

(b) The curve with equation y = f(x) is reflected in the y-axis. Write down the equation of the transformed curve. You should use function notation. [1]

The equation of the transformed curve is

*y* = .....

**20.** The following diagram shows a sketch of  $y = \cos x$  for values of x from 0° to 360°.



Given that  $\cos 25^\circ = 0.9063$  , correct to 4 decimal places, write down all the solutions of the equation

$$\cos x = -0.9063$$

| for values of $x$ from 0° to 360°. | [2]     |
|------------------------------------|---------|
|                                    |         |
|                                    |         |
|                                    |         |
|                                    | ,       |
|                                    |         |
|                                    | ······· |
|                                    |         |
|                                    |         |

| 23                                                                        |     |
|---------------------------------------------------------------------------|-----|
| Solve the following equation.  Do not use a trial and improvement method. | [5] |
| $\frac{x}{x+1} = \frac{2}{4x-5}$                                          |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |
| END OF PAPER                                                              |     |
|                                                                           |     |
|                                                                           |     |
|                                                                           |     |



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examine<br>only |
|-----------------|----------------------------------------------------------------------------------------|-----------------|
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |

