GCSE
MATHEMATICS
8300/2H
Higher Tier Paper 2 Calculator
Mark scheme
November 2022
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<$ b
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comment
$\mathbf{1}$	-20.425	B1	

\mathbf{Q}	Answer	Mark	Comment
$\mathbf{2}$	9.61×10^{18}	B1	

Q	Answer	Mark	Comment
$\mathbf{3}$	$(0,-6)$	B1	

\mathbf{Q}	Answer	Mark	Comment
$\mathbf{4}$	$\frac{c}{b^{4}}$	B1	

Q	Answer	Mark	Comments	
6(a)	$\frac{90-42}{100} \times 24000$ or $\frac{48}{100} \times 24000 \text { or } 11520$ or $\frac{42}{100} \times 24000 \text { or } 10080$ or $\frac{48-42}{100} \times 24000$ or 6 and 48 and 42 seen	M1	oe	
	1440	A1	SC1 1920 or answer with digits 144	
	Additional Guidance			
	Up to M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	Build-up to 48\% or 42\% must be correct or full method must be shown			
	eg only $48 \% \times 24000$ with no or incorrect evaluation			M0

Q	Answer	Mark	Comments	
6(b)	Ticks Cannot tell and valid reason	B1	eg ticks Cannot tell and We don't know the number sold (in 2019)	
	Additional Guidance			
	Ignore calculations using percentages from the bar chart			
	Allow any unambiguous indication of Cannot tell with a valid reason			
	Ticks Cannot tell and They might have sold fewer drinks (in 2019)			B1
	Ticks Cannot tell and It (only) gives percentages			B1
	Ticks Cannot tell and It doesn't tell you how many coffees were sold			B1
	Ticks Cannot tell and Don't have enough information			B1
	Ticks Cannot tell and Both bars the same height			B0
	Ticks Yes or ticks No			B0

Q		Answer	Mark	Comments		
	Correct evaluation of the cube root of an integer [40, 50] or correct evaluation of the cube of a decimal or fraction (3, 3.5]		M1	$\begin{aligned} & \text { eg } \sqrt[3]{40}=3.4 \text { or } 40 \rightarrow 3.4 \\ & \text { eg } 3.5^{3}=42.8 \text { or } 3.5 \rightarrow 42.8 \end{aligned}$		
	42		A1	SC1 answer given as $\sqrt[3]{42}$		
	Additional Guidance					
	Up to M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts					
	Condone eg $40=3.4$ or $\sqrt{40}=3.4$ to mean $\sqrt[3]{40}=3.4$					
	Answer only 42					M1A1
	Must select 42 as final answer for M1A1 ie 42 as the last in a list with a blank answer line is not enough for A1 unless 42 selected					
	If $\sqrt[3]{42}$ or 3.5^{3} is evaluated then it must be correct to award the A1 for 42					
7(a)	NB 42 only from incorrect method eg listing multiples of 3 or $42 \div 3$ seen or 42 is divisible by 3 as the working					M0AO
	Acceptable values for cube roots of integers in range					
	40	$3.4(19 \ldots)$ or 3.42(0)		46	3.5(83...) or 3.6	
	41	$3.4(48 \ldots)$ or 3.45		47	$3.6(08 \ldots)$ or 3.609 or 3.61	
	42	$3.4(76 \ldots)$ or 3.48 or 3.5		48	3.6(34...)	
	43	3.5(03...)		49	$3.6(59 \ldots)$ or 3.66 or 3.7	
	44	3.5(30...)		50	$3.6(84 \ldots)$ or 3.7	
	45	$3.5(56 \ldots) \text { or } 3.557$ or 3.56 or 3.6				
	Examples of cubes of numbers in range with their acceptable values					
	3.1	$29(.791)$ or 29.8 or 30		3.4	39(.304)	
	3.2	$32(.768)$ or 32.77 or 32.8 or 33		3.5 or 3.49	$42(.875)$ or 42.88 or 42.9 or 43	
	3.3	$35(.937)$ or 35.94 or 36				

Q	Answer \quad Mark		Comments	
	$\begin{array}{lll} 11 & 5 & 4 \\ \text { or } & & \\ 10 & 7 & 3 \\ \text { or } & & \\ 10 & 6 & 4 \\ \text { or } & & \\ 9 & 8 & 3 \\ \text { or } & & \\ 9 & 7 & 4 \\ \text { or } & & \\ 9 & 6 & 5 \\ \text { or } & & \\ 8 & 7 & 5 \end{array}$	B2	any order B1 answer of three positiv any order with sum 20 eg $17 \quad 21$ or $9 \frac{1}{2} \quad 8 \frac{1}{2} \quad 2$ or 1055 or $6 \frac{2}{3} \quad 6 \frac{2}{3} \quad 6 \frac{2}{3}$ or correct equation in w, x and eg $4 w+4 x+4 y=80$ or	bers in $+y=20$
8(a)	Additional Guidance			
	Ignore attempts to work out the volume or surface area eg $\begin{array}{llll}10 & 5 & 5 & \text { volume calculated as } 500\end{array}$			B1
	Negative numbers and/or zero used			B0
	$w x y>200$ or $w x y=200$			B0
	Allow $6 . \dot{6}$ for $6 \frac{2}{3}$			

Q	Answer	Mark	Comments
8(b)	$54 a^{2}$	B1	

\mathbf{Q}	Answer	Mark	Comment
$\mathbf{9}$	1225	B1	

Q	Answer	Mark	Comment
10	Alternative method 1 Works out nth term of new sequence		
	Common difference of 5 identified	M1	implied by $5 n \ldots$
	$5 n+3$	A1	oe eg $8+5(n-1)$
	their $(5 n+3)-(n+1)$	M1	oe their $(5 n+3)$ must be a linear expression condone missing brackets
	$4 n+2$	A1ft	oe eg $6+4(n-1)$ ft their $5 n+3$ which must be a linear expression missing brackets must be recovered
	Alternative method 2 Works out terms of sequence A and sequence B		
	2, 3, 4	M1	sequence A
	6, 10, 14	A1	sequence B
	Common difference of 4 identified	M1	ft their $6,10,14$ which must be a linear sequence for B
	$4 n+2$	A1ft	oe eg $6+4(n-1)$ ft their $6,10,14$ which must be a linear sequence for B
	Additional Guidance		
	Choose the scheme that favours the student		

Q	Answer	Mark	Comments
12	Alternative method 1		
	$6 x+x+5 x+6 x+x+6 x+x$ or $26 x$ or $6+1+5+6+1+6+1 \text { or } 26$	M1	oe eg $7 x+6 x-x+6 x+x+6 x+x$ $26 x$ or 26 is implied by 3.8 oe if addition not seen
	their $26 x=98.8$ or $98.8 \div$ their 26 or 3.8 or $\frac{19}{5}$	M1	oe equation must have terms collected if 1 st M1 not awarded their $26 x$ must be $24 x$ or $25 x$ or $27 x$ if 1 st M1 not awarded their 26 must be 24 or 25 or 27
	their 3.8×14	M1dep	dep on 2nd M1 oe eg $45.6+7.6$
	53.2	A1ft	oe ft their 3.8 if MOM2 awarded

Mark scheme and Additional Guidance continue on the next page

$\begin{gathered} 12 \\ \text { cont } \end{gathered}$	Alternative method 2			
	$6 x+x+6 x \text { or } 13 x$ or $6+1+6 \text { or } 13$	M1	oe eg $6 x+x+5 x+x$ $13 x$ or 13 is implied by 3.8 oe if addition not seen	
	their $13 x=98.8 \div 2$ or $49.4 \div$ their 13 or 3.8 or $\frac{19}{5}$	M1	oe equation must have terms collected if 1 st M1 not awarded their $13 x$ must be $12 x$ if 1 st M1 not awarded their 13 must be 12	
	their 3.8×14	M1dep	dep on 2nd M1 oe eg $49.4+3.8$	
	53.2	A1ft	oe ft their 3.8 if MOM2 awarded	
	Additional Guidance			
	Up to M3 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	Follow through must be to at least 1 dp and their 26 or their 13 must be seen For information: $24 \rightarrow 57.6 \ldots 25 \rightarrow 55.3 \ldots 27 \rightarrow 51.2 \ldots 12 \rightarrow 57.6 \ldots$			M0M1M1A1ft
	Both 2nd and 3rd method marks may be implied by their answer. If not using $24,25,26,27,12$ or 13 you must have seen the first M1.			
	$27 x=98.8$ (1st M0, no addition seen, but $27 x$ allowed) $\frac{98.8}{27} \times 14$, answer 51.2			MOM1 M1A1ft
	$7 x+5 x+6 x+x+6 x+x=20 x \quad$ (correct terms added with incorrect total) $98.8 \div 20=4.94$ 69.16 (multiplication by 14 implied)			M1 M1 M1A0
	$98.8 \div 20=4.94$ (1 st M0, no addition seen, and 20 not allowed) 4.94×14, answer 69.16			MOMO MOAO
	$6 x+x+5 x+6 x+x+6 x+x=26 x^{7}$			M1MOMOA0

Q	Answer	Mark	Comment
13	Alternative method 1 Works out $B C$ using Pythagoras then works out $E H$		
	$\begin{aligned} & 7^{2} \text { or } 49 \\ & \text { and } \\ & 4.2^{2} \text { or } 17.64 \end{aligned}$	M1	oe
	$\sqrt{7^{2}-4.2^{2}}$ or $\sqrt{49-17.64}$ or $\sqrt{31.36}$ or 5.6	M1dep	oe implied by 11.76 as the area of the smaller triangle may be on diagram
	$6 \div 4.2 \times$ their 5.6 or 8	M1dep	oe full method to work out $E H$ may be on diagram as $E H$ or $F G$ implied by 24 as the area of the larger triangle or 60 as the area of the rectangle
	$0.5 \times$ their 8×6 or 24 and their 8×7.5 or 60	M1dep	```and their 8 * 7.5 or 0.5 < their 8 > (7.5 + 13.5)```
	84	A1	

Mark scheme and Additional Guidance continues on the next two pages

$\begin{gathered} 13 \\ \text { cont } \end{gathered}$	Alternative method 2 Works out ED using similar triangles then works out $E H$		
	$6 \div 4.2 \times 7$ or 10	M1	oe may be on diagram
	(their 10$)^{2}$ or 100 and 6^{2} or 36	M1dep	oe
	$\sqrt{(\text { their } 10)^{2}-6^{2}}$ or $\sqrt{100-36}$ or $\sqrt{64}$ or 8	M1dep	oe full method to work out $E H$ may be on diagram as $E H$ or $F G$ implied by 24 as the area of the larger triangle or 60 as the area of the rectangle
	$0.5 \times$ their 8×6 or 24 and their 8×7.5 or 60	M1dep	```oe eg 0.5 }\times\mathrm{ their }5.6\times4.2\times(6\div4.2) 2, and their 8 > 7.5 or 0.5 x their 8 * (7.5 + 13.5)```
	84	A1	

Mark scheme and Additional Guidance continue on the next page

$\begin{gathered} 13 \\ \text { cont } \end{gathered}$	Alternative method 3 Uses trigonometry to work out $B C$ then works out $E H$ or uses trigonometry to work out $E H$		
	$\text { (angle } A B C=\text {) } \sin ^{-1}\left(\frac{4.2}{7}\right)$ or (angle $A B C=$) $[36.8,36.9]$ or (angle $B A C=$) $\cos ^{-1}\left(\frac{4.2}{7}\right)$ or (angle BAC=) [53.1, 53.2]	M1	oe full method to work out $A B C$ or $B A C$
	$7 \times \cos$ (their [36.8, 36.9]) or $7 \times \sin$ (their [53.1, 53.2]) or 5.6 or $\tan ($ their $[36.8,36.9])=\frac{6}{E H}$ or $\tan ($ their $[53.1,53.2])=\frac{E H}{6}$	M1dep	oe full method to work ou or partial method to work
	$6 \div 4.2 \times$ their 5.6 or 8 or $6 \div \tan$ (their $[36.8,36.9]$) or $6 \times \tan ($ their $[53.1,53.2])$	M1dep	oe full method to work out may be on diagram as implied by 24 as the a triangle or 60 as the a
	$0.5 \times$ their 8×6 or 24 and their 8×7.5 or 60	M1dep	oe eg $0.5 \times$ their 5.6 and their 8×7.5 or $0.5 \times$ their $8 \times(7.5+$
	84	A1	
		ditional	idance
	Up to M3 may be awarded for co answer, even if this is seen amo	work w multiple	no answer, or incorrect empts

Q	Answer	Mark	Comment	
14	137500×0.08 or 11000	M1	oe eg $137500 \times 1.08-137500$	
	their $11000 \div 0.4$ or 27500	M1dep	oe may be seen in stages eg $11000 \div 40=275$ and 275×100	
	their 27500×6	M1dep	oe eg $137500+27500$	
	165000	A1	SC2 2227500	
	Additional Guidance			
	Up to M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	SC2 is from starting with 137500×1.08			

Q	Answer	Mark	Comments
$\mathbf{1 5}$	$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$	B1	

Q	Answer	Mark	Comment
$\mathbf{1 6}$	$y=x^{3}+1$	B1	

Q	Answer	Mark	Comment
17	$\frac{5}{2}$	B1	

Q	Answer	Mark	Comment	
18(b)	Home and valid reason referring to median	B1ft	eg Home and median is higher (in home games) ft their box plot or their values	
	Additional Guidance			
	Strict ft			
	Values for the medians do not need to be stated, but if stated they must be 106 and correct for their box plot			
	Use of any other measure along with eg Home as median is higher and	orrect is the bi	ponse is BO est value	B0
	106 is bigger than 99 so Home			B1
	Home matches as the average was	more		B1
	Median home 106 Median away is	So H		B1
	Median home 106 Median away is			B0
	Home as my box plot shows it			B0
	Home. The mean is 7 more			B0
	Home as the average is higher			B0
	They generally do better in home m	hes so	ome	B0

Q	Answer	Mark	Comment	
18(c)	Away and valid reason referring to interquartile range	B1ft	eg Away and interquartile range is lower (in away games) ft their box plot or their values	
	Additional Guidance			
	Strict ft			
	Values for the interquartile ranges do not need to be stated, but if stated they must be 22 and correct for their box plot			
	Answer states that ranges are equal alongside a correct response			B1
	Answer based on range only			B0
	Use of any other measure (apart fro response is B0 eg Away as IQR is lower and the upper	range) quar	ng with correct is also lower	B0
	13 is lower than 22 so Away			B1
	Away matches as the spread was 9			B1
	Away matches as the spread was lo			B0
	Away because the box is narrower			B1
	IQR home 22 IQR away is 13 So A			B1
	IQR home 22 IQR away is 13			B0
	Away as my box plot shows it			B0
	Away. The LQ is bigger			B0
	Away as the average is lower			B0
	They generally do worse in away ma	hes so	way	B0

Q	Answer	Mark	Comment	
21(a)	Alternative method 1			
	$6\left(\frac{3 x+9}{5}\right)-1$	M1	oe eg $\frac{18 x+49}{5}$	
	17	A1	SC1 8.4 oe value	
	Alternative method 2			
	$\frac{3 \times 2+9}{5}$ or 3 or $g(3)$	M1	oe eg $6 \times 3-1$	
	17	A1	SC1 8.4 oe value	
	Additional Guidance			
	Answer 17			M1A1
	Working out $f(2)$ and $g(2)$ is M0 unless recovered eg1 $\frac{3 \times 2+9}{5}=3 \quad 6 \times 2-1=11$ eg $23 \times 11=33$			$\begin{aligned} & \text { MOAO } \\ & \text { MOAO } \end{aligned}$
	17 followed by further work eg $17 \times 3=51$			M1A0
	SC1 is for $\mathrm{fg}(2)$			

Q	Answer	Mark	Comment	
21(b)	Alternative method 1			
	$\begin{aligned} & \frac{5 x-9}{3} \text { or } \frac{5 y-9}{3} \\ & \text { or } \frac{5 \times 8-9}{3} \end{aligned}$	M1	oe	
	$\frac{31}{3}$ or $10 \frac{1}{3}$ or $10.3(\ldots)$	A1		
	Alternative method 2			
	$\frac{3 x+9}{5}=8$	M1	oe equation	
	$\frac{31}{3}$ or $10 \frac{1}{3}$ or $10.3(\ldots)$	A1		
	Additional Guidance			
	$\frac{31}{3}$ or $10 \frac{1}{3}$ or $10.3(\ldots)$			M1A1
	Ignore conversion attempt after correct answer seen			

Q	Answer	Mark		
22	$x\left(x^{2}-49\right)$ or $\left(x^{2}+7 x\right)(x-7)$ or $\left(x^{2}-7 x\right)(x+7)$	M1	oe partial factorisation eg $x\left(x^{2}-7^{2}\right)$ any order eg ($\left.x^{2}-49\right) x$	
	$x(x+7)(x-7)$	A1	oe full factorisation any order eg $(x+7) x(x-7)$	
	Additional Guidance			
	M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	Ignore correctly placed multiplication signs			
	Ignore missing final bracket eg $x(x-7)(x+7$			M1A1
	Allow x to be $1 x$ throughout			
	Allow x to be ($x+0$) or (x-0) throughout			
	Ignore any equating to zero			
	Ignore any attempt to 'solve'			
	$x(-7+x)(7+x)$			M1A1

Q	Answer	Mark	Comment
23(a)	1.5×6 or 9 or 3.5×4 or 14 or 5×2 or 10 or 4.5×4 or 18 or 2.5×4 or 10	M1	oe values $9,14,10$ or 18 must be in the correct row in the table or linked to the correct bar on the histogram
	$1.5 \times 6 \times 3$ or 9×3 or 27 or $3.5 \times 4 \times 8$ or 14×8 or 112 or $5 \times 2 \times 11$ or 10×11 or 110 or $4.5 \times 4 \times 14$ or 18×14 or 252 or $2.5 \times 4 \times 18$ or 10×18 or 180 or 681	M1dep	oe values $27,112,110,252$ or 180 must be in the correct row in the table
	(their $27+$ their $112+$ their $110+$ their $252+$ their 180) \div (their $9+$ their $14+$ their $10+$ their $18+$ their 10) or $681 \div 61$	M1dep	oe full correct method eg (their $27+$ their $112+$ their $110+$ their $252+$ their 180) $\div 61$
	[11.16, 11.2]	A1	accept 11 with M3 scored and no errors

Additional Guidance is on the next page

Q	Answer	Mark	Comm	
23(b)	Valid reason	B1	eg the data is groupe or the exact values or the midpoints are	
	Additional Guidance			
	Because we are using midpoints			B1
	Midpoint is an average			B1
	There are no raw data			B1
	Numbers are rounded			B0
	There are no data to use			B0
	The answer is a decimal			B0
	Valid reason with an irrelevant statement			B1

Q	Answer	Mark	Comm
25	Any one of $\begin{aligned} & (\overrightarrow{Q W}=) \mathbf{a}+\mathbf{b}-\frac{1}{3} \mathbf{a} \\ & (\overrightarrow{W X}=) \frac{1}{3} \mathbf{a}+\frac{1}{2} \mathbf{b} \\ & (\overrightarrow{Q X}=) \mathbf{a}+\mathbf{b}+\frac{1}{2} \mathbf{b} \end{aligned}$	M1	oe eg $(\overrightarrow{Q W}=) \frac{2}{3} \mathbf{a}+$ or $(\overrightarrow{W X}=)-\frac{2}{3} \mathbf{a}+\mathbf{b}$ or $(\overrightarrow{Q X}=) \mathbf{a}+\frac{3}{2} \mathbf{b}$ allow use of $\overrightarrow{W Q}$ and and/or $\overrightarrow{X Q}$
	Any two of $\begin{aligned} & (\overrightarrow{Q W}=) \mathbf{a}+\mathbf{b}-\frac{1}{3} \mathbf{a} \\ & (\overrightarrow{W X}=) \frac{1}{3} \mathbf{a}+\frac{1}{2} \mathbf{b} \\ & (\overrightarrow{Q X}=) \mathbf{a}+\mathbf{b}+\frac{1}{2} \mathbf{b} \end{aligned}$	M1dep	oe allow use of $\overrightarrow{W Q}$ and and/or $\overrightarrow{X Q}$
	Any valid pair of vectors and indication that one vector is a multiple of the other eg $\overrightarrow{Q W}=\frac{2}{3} \mathbf{a}+\mathbf{b}$ and $\overrightarrow{W X}=\frac{1}{3} \mathbf{a}+\frac{1}{2} \mathbf{b}$ and $\frac{2}{3} \mathbf{a}+\mathbf{b}=2\left(\frac{1}{3} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)$	A1	eg $\overrightarrow{Q W}=\frac{2}{3} \mathbf{a}+\mathbf{b}$ a and $3 \overrightarrow{Q W}=-2 \overrightarrow{X Q}$ or $\overrightarrow{Q X}=\mathbf{a}+\frac{3}{2} \mathbf{b}$ and and $W X$ is $\frac{1}{3}$ of $Q X$ and $W X$ is parallel to $Q X$
	Additional Guidance		
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts		

Q	Answer	Mark	Comm
26	$\begin{aligned} & 6 \times 10 \div 2 \text { or } 30 \\ & \text { or } 6 \times 90 \text { or } 540 \\ & \text { or } 570 \end{aligned}$	M1	oe eg $\frac{1}{2} \times \frac{6}{10} \times 10$ or $\frac{1}{2} \times(100+90) \times$ may be on diagram
	$\begin{aligned} & 800-6 \times 10 \div 2-6 \times 90 \\ & \text { or } 800-\text { their } 30-\text { their } 540 \\ & \text { or } 800 \text { - their } 570 \\ & \text { or } 230 \end{aligned}$	M1dep	oe full method for rem may be on diagram may be embedded
	$\begin{aligned} & \frac{1}{2} \times(v+6) \times 40=\text { their } 230 \\ & 2 \times \text { their } 230 \div 40-6 \end{aligned}$	M1dep	oe eg $20 v+120=$ th any letter
	5.5	A1	oe value
	Additional Guidance		
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts		

Q	Answer	Mark	Co	
	$\frac{n}{25} \text { and } \frac{n-1}{24}$	M1	oe may be implied eg	
	$n^{2}-n-210(=0)$	M1dep	oe with all terms fully eg $n^{2}-n=210$	lified
	$\begin{aligned} & (n-15)(n+14) \\ & \text { or } \frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 1 \times-210}}{2 \times 1} \\ & \text { or } \frac{1}{2} \pm \sqrt{210+\frac{1}{4}} \end{aligned}$	M1	oe eg $\frac{1 \pm \sqrt{841}}{2}$ or 0.5 ± 14.5 ft their 3-term quad	
	15	A1	15 and -14 is A0	
	Additional Guidance			
	Answer 15 with no working or from trial			M3A1
27	Beware Answer 15 from incorrect working eg $\frac{n}{25} \times \frac{n}{25}=\frac{7}{20} \quad n^{2}=218.75 \quad n=15$			MOMOMOAO
	Allow n to be N or x etc			
	3rd M1 Allow (-1$)^{2}$ to be 1^{2}			
	3rd M1 Do not allow (-1$)^{2}$ to be -1^{2} unless recovered			
	3rd M1 Allow \pm to be +			
	3rd M1 Square root sign should cover all appropriate work unless recovered eg $\frac{1 \pm \sqrt{1}+840}{2}$ not recovered			M0
	3rd M1 Fraction line should be under all appropriate work unless recovered eg $1 \pm \frac{\sqrt{841}}{2}$ not recovered			M0
	3 rd M1 $\sqrt{ }\left((-1)^{2}-4 \times 1 \times-210\right)$ is correct for $\sqrt{(-1)^{2}-4 \times 1 \times-210}$			

Q	Answer	Mark	Comment
28	$\begin{aligned} & \frac{E P}{\sin 35}=\frac{29}{\sin 114} \\ & \text { or } \frac{29 \sin 35}{\sin 114} \end{aligned}$	M1	oe eg $\frac{\sin 35}{E P}=\frac{\sin 114}{29}$ or $\frac{E P}{\sin 35}=[31.7,31.7445]$
	[18.2, 18,21]	A1	accept 18 with M1 scored
	Additional Guidance		
	$E P$ may be $P E$ or x etc		
	Do not regard 31 as a m		

