

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

November 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comment
1	-20.425	B1	

Q	Answer	Mark	Comment
2	9.61 × 10 ¹⁸	B1	

Q	Answer	Mark	Comment
3	(0, -6)	B1	

Q	Answer	Mark	Comment
4	$\frac{c}{b^4}$	B1	

Q	Answer	Mark	Comments	
	At least two of 2^3 , 3^2 , 7 selected eg $2^3 \times 3^2 \times 7$ or 2 2 2 3 3 7 7 or $2^2 + 3^2 + 7$ or $2^3 \times 3^2$ or $2^3 + 7$ or 3^2 . 7	M1 A1	allow 2^3 to be $2 \times 2 \times 2$ or allow 3^2 to be 3×3 or 9 allow 7 to be 7^1 selection is implied by inclusintersection of overlapping of M0 inclusion of 5 in selection	sion in ircles
	Additional Guidance 8 × 9 × 7			M1
5	8, 9, 49			M1
	4 + 9 + 7	M1		
	Intersecting circles with eg only 9 and 7 in the intersection			
	Allow inclusion of 1 for up to M1 eg $1 \times 2^3 \times 3^2 \times 7$			M1
	$2^3 \times 3^2 \times 5 \times 7$			MO
	Answer 504			M1A1
	M1 seen with answer the LCM			

Q	Answer	Mark	Comments	
6(a)	$\frac{90-42}{100} \times 24000$ or $\frac{48}{100} \times 24000 \text{ or } 11520$ or $\frac{42}{100} \times 24000 \text{ or } 10080$ or $\frac{48-42}{100} \times 24000$ or 6 and 48 and 42 seen	M1	oe	
	1440	A1	SC1 1920 or answer with o	digits 144
Additional Guidan			Guidance	
	Up to M1 may be awarded for correct answer, even if this is seen amongst			
	Build-up to 48% or 42% must be corr	method must be shown		
	eg only 48% × 24 000 with no or inco	M0		

Q	Answer Mark Comments				
	Ticks Cannot tell and valid reason	B1	eg ticks Cannot tell and We don't kn the number sold (in 2019)		
	Ad	ditional G	Guidance		
	Ignore calculations using percentages from the bar chart				
	Allow any unambiguous indication of				
6(b)	Ticks Cannot tell and They might have sold fewer drinks (in 2019)				
	Ticks Cannot tell and It (only) gives percentages			B1	
	Ticks Cannot tell and It doesn't tell you how many coffees were sold				
	Ticks Cannot tell and Don't have eno	Ticks Cannot tell and Don't have enough information		B1	
	Ticks Cannot tell and Both bars the same height			В0	
	Ticks Yes or ticks No			В0	

Q		Answer	Mark		Comments	
		t evaluation of the cube root nteger [40, 50]		eg	$\sqrt[3]{40} = 3.4 \text{ or } 40 \rightarrow 3.4$	
	or		M1	ea :	$3.5^3 = 42.8 \text{ or } 3.5 \rightarrow 42$	8
		evaluation of the cube of a all or fraction (3, 3.5]		- Cg ·	0.0 42.0 01 0.0 742	.0
	42		A1	SC	1 answer given as $\sqrt[3]{42}$	
		Ad	ditional	Guidar	nce	
		M1 may be awarded for correc r, even if this is seen amongst				
	Condo	ne eg $40 = 3.4$ or $\sqrt{40} = 3.4$ to	o mean 🤅	$\sqrt[3]{40} = 3$	3.4	
	Answe	r only 42				M1A1
	Must select 42 as final answer for M1A1 ie 42 as the last in a list with a blank answer line is not enough for A1 unless 42 selected					
	If $\sqrt[3]{42}$ or 3.5 ³ is evaluated then it must be correct to award the A1 for 42					
7(a)	NB 42 only from incorrect method eg listing multiples of 3 or 42 ÷ 3 seen or 42 is divisible by 3 as the working					
()	Acceptable values for cube roots of integers in range					
	40	3.4(19) or 3.42(0)	46 3.5(83) or 3.6			
	41	3.4(48) or 3.45		47	3.6(08) or 3.609 or	3.61
	42	3.4(76) or 3.48 or 3.5		48	3.6(34)	
	43	3.5(03)		49	3.6(59) or 3.66 or	3.7
	44	3.5(30)		50	3.6(84) or 3.7	
	45					
	Examples of cubes of numbers in range with their acceptable values					
	3.1	29(.791) or 29.8 or 30		3.4	39(.304)	
	3.2	32(.768) or 32.77 or 32.8 or 33		3.5 or 3.49	42(.875) or 42.88 or or 43	42.9
	3.3	35(.937) or 35.94 or 36			1	

Q	Answer	Mark	Comments		
	Valid response that indicates there is one (negative) answer missing B1 eg -10 (is also an answer) or there is a negative value or square roots have two an or answer is 10 and -10				
	Add	ditional G	Guidance		
	-10 × -10 (= 100)			B1	
	Another number can square to make	100 (impl	ies exactly two)	B1	
	She has forgotten the other value (im	plies exa	ctly two)	B1	
	There is another value it could be (im	plies exa	ctly two)	B1	
	It could be a different number (implies exactly two)				
	It could be negative (bod means 10 could be -10)				
	−10 ² (= 100) (condone missing brackets around −10)				
7(b)	± $\sqrt{100}$				
	Indication that there might be more the				
	eg There are other possible numbers				
	eg There could be other values	В0			
	eg Other numbers square to make 10	В0			
	eg She hasn't included negatives				
	Repeating the question				
	eg There is more than 1 possible valu		В0		
	eg 10 is not the only possible value	В0			
	eg More than 1 number works	В0			
	A partially correct statement				
	$eg\ x$ could be negative or decimal				
	eg $-10 \times -10 = -100$				
	eg $x^2 = -10$			В0	

Q	Answer	Mark	Comments		
8(a)	11 5 4 or 10 7 3 or 10 6 4 or 9 8 3 or 9 7 4 or 9 6 5 or 8 7 5	B2	any order B1 answer of three positive any order with sum 20 eg 17 2 1 or $9\frac{1}{2}$ $8\frac{1}{2}$ 2 or 10 5 5 or $6\frac{2}{3}$ $6\frac{2}{3}$ $6\frac{2}{3}$ or correct equation in w , x and eg $4w + 4x + 4y = 80$ or w	y	
	Additional Guidance				
	Ignore attempts to work out the volume or surface area eg 10 5 5 volume calculated as 500 Negative numbers and/or zero used $wxy > 200$ or $wxy = 200$			B1 B0 B0	
	Allow 6. 6 for $6\frac{2}{3}$				

Q	Answer	Mark	Comments
8(b)	$54a^2$	B1	

Q	Answer	Mark	Comment
9	1225	B1	

Q	Answer	Mark	k Comment	
	Alternative method 1 Works out <i>n</i> th term of new sequence			
	Common difference of 5 ider	ntified M1	implied by 5n	
	5 <i>n</i> + 3	A1	oe eg 8 + 5(n - 1)	
	their $(5n+3)-(n+1)$	M1	oe their $(5n + 3)$ must be a linear expression condone missing brackets	
40	4n + 2	A1ft	oe eg $6 + 4(n - 1)$ ft their $5n + 3$ which must be a linear expression missing brackets must be recovered	
10	Alternative method 2 Works out terms of sequence A and sequence B			
	2, 3, 4	M1	sequence A	
	6, 10, 14	A1	sequence B	
	Common difference of 4 ider	ntified M1	ft their 6, 10, 14 which must be a linear sequence for B	
	4n + 2	A1ft	oe eg $6 + 4(n - 1)$ ft their 6, 10, 14 which must be a linear sequence for B	
		al Guidance		
	Choose the scheme that favor	ours the studen	nt	

Q	Answer	Mark	Comments		
	1.2 × 20 = 24 and 40 – 24 = 16	B1	oe eg $1.2 \times 20 = 24$ and $24 \div 20 = 24$ and $24 \div$	20 = 1.2 1.2 = 20	
	Additional Guidance				
	40 – 24 = 16 and 40 – 16 = 24 and 24 + 16 = 40 are equivalent				
	$1.2 \times 20 = 24$ and $24 \div 1.2 = 20$ and	0 = 1.2 are equivalent			
11(a)	40 - 24 = 16 or $16 + 24 = 40$ or 40	0-24=16 or $16+24=40$ or $40-16=24$			
	(20 minutes =) 24 litres leak out 4	В0			
	1.2 × 20 = 24 16 litres left		В0		
	Allow unambiguous working in ml and	d/or secor	nds		
	For eg $40 - 24 = 16$ condone $24 - 40 = 16$ or $24 - 40 = -16$ Condone incorrect use of equals sign				
	eg 1.2 × 20 = 24 + 16 = 40 or 1.2 × 20 = 24 - 40 = 16			B1	
	Correct response with irrelevant work			B1	
	16 from two different ways with one very eg $1.2 \times 20 = 24$ and $40 - 24 = 16$		В0		

Q	Answer	Mark	Comments		
	3	B1			
	Correct method for gradient eg $\frac{40-16}{15-\text{their }3}$ or $\frac{24}{12}$	M1	oe eg $\frac{30-25}{10-7.5}$ or $\frac{10}{5}$ or $40-38$		
	2	A1ft	correct or ft their 3		
	Ade	ditional G	Guidance		
	Note that their 3 can be used to work	out the ra	ate but does not have to be		
	Values seen on graph must be used	correctly			
	eg 24 and 12 seen on the graph is M0 unless subsequently used correctly in attempt to work out the gradient				
11(b)	A1ft answers must be to 1 dp or bette				
	eg 3.5		B0		
	$\frac{40-16}{15-3.5}$				
	15 – 3.5 2.1 (accept 2.08)				
	After B0 the method may be implied (use $\frac{40-16}{15-\text{their }3}$ to check)				
	eg 6				
	2.7 (accept 2.66)	M1A1ft			
	If the report is blank, 3 and 2 must be unambiguously identified in working to be acceptable				
	Allow 2 to be written as $\frac{2}{1}$				

Q	Answer	Mark	Comments
	Alternative method 1		
	6x + x + 5x + 6x + x + 6x + x or $26x$ or $6 + 1 + 5 + 6 + 1 + 6 + 1$ or 26	M1	oe eg $7x + 6x - x + 6x + x + 6x + x$ 26x or 26 is implied by 3.8 oe if addition not seen
12	their $26x = 98.8$ or $98.8 \div \text{ their } 26$ or $3.8 \text{ or } \frac{19}{5}$	M1	oe equation must have terms collected if 1st M1 not awarded their 26x must be 24x or 25x or 27x if 1st M1 not awarded their 26 must be 24 or 25 or 27
	their 3.8 × 14	M1dep	dep on 2nd M1 oe eg 45.6 + 7.6
	53.2	A1ft	oe ft their 3.8 if M0M2 awarded

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2			
	6x + x + 6x or $13x$ or $6 + 1 + 6$ or 13	M1	oe eg $6x + x + 5x + x$ 13x or 13 is implied by 3.8 not seen	oe if addition
	their $13x = 98.8 \div 2$ or $49.4 \div \text{ their } 13$ or $3.8 \text{ or } \frac{19}{5}$	M1	oe equation must have terms if 1st M1 not awarded their 12x if 1st M1 not awarded their	r 13x must be
	their 3.8 × 14	M1dep	dep on 2nd M1 oe eg 49.4 + 3.8	
	53.2	A1ft	oe ft their 3.8 if M0M2 awarded	
12	Additional Guidance			
cont	Up to M3 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	Follow through must be to at least 1 of seen For information: 24 → 57.6 25 →	M0M1M1A1ft		
	Both 2nd and 3rd method marks may be implied by their answer. If not using 24, 25, 26, 27, 12 or 13 you must have seen the first M1.			
	$27x = 98.8$ (1st M0, no addition seen, but $27x$ allowed) $\frac{98.8}{27} \times 14$, answer 51.2			M0M1 M1A1ft
	$7x + 5x + 6x + x + 6x + x = 20x$ (correct terms added with incorrect total) $98.8 \div 20 = 4.94$ 69.16 (multiplication by 14 implied)			M1 M1 M1A0
	$98.8 \div 20 = 4.94$ (1st M0, no addition seen, and 20 not allowed) 4.94×14 , answer 69.16			M0M0 M0A0
	$6x + x + 5x + 6x + x + 6x + x = 26x^{7}$			M1M0M0A0

Q	Answer	Mark	Comment	
	Alternative method 1 Works out BC using Pythagoras then works out EH			
	7^2 or 49 and 4.2^2 or 17.64	M1	oe	
13	$\sqrt{7^2 - 4.2^2}$ or $\sqrt{49 - 17.64}$ or $\sqrt{31.36}$ or 5.6 $6 \div 4.2 \times \text{their 5.6 or 8}$	M1dep M1dep	oe implied by 11.76 as the area of the smaller triangle may be on diagram oe full method to work out <i>EH</i> may be on diagram as <i>EH</i> or <i>FG</i> implied by 24 as the area of the larger triangle or 60 as the area of the rectangle	
	$0.5 \times$ their 8×6 or 24 and their 8×7.5 or 60	M1dep	oe eg $0.5 \times$ their $5.6 \times 4.2 \times (6 \div 4.2)^2$ and their 8×7.5 or $0.5 \times$ their $8 \times (7.5 + 13.5)$	
	84	A1		

Mark scheme and Additional Guidance continues on the next two pages

	Alternative method 2 Works out I	ED using s	similar triangles then works out <i>EH</i>
	6 ÷ 4.2 × 7 or 10	M1	oe may be on diagram
	(their 10) ² or 100 and 6 ² or 36	M1dep	oe
13 cont	$\sqrt{(\text{their } 10)^2 - 6^2} \text{ or } \sqrt{100 - 36}$ or $\sqrt{64}$ or 8	M1dep	oe full method to work out <i>EH</i> may be on diagram as <i>EH</i> or FG implied by 24 as the area of the larger triangle or 60 as the area of the rectangle
	0.5 × their 8 × 6 or 24 and their 8 × 7.5 or 60	M1dep	oe eg $0.5 \times$ their $5.6 \times 4.2 \times (6 \div 4.2)^2$ and their 8×7.5 or $0.5 \times$ their $8 \times (7.5 + 13.5)$
	84	A1	

Mark scheme and Additional Guidance continue on the next page

			work out <i>BC</i> then works out <i>EH</i> to work out <i>EH</i>	
	(angle $ABC =$) $\sin^{-1}\left(\frac{4.2}{7}\right)$ or (angle $ABC =$) [36.8, 36.9] or (angle $BAC =$) $\cos^{-1}\left(\frac{4.2}{7}\right)$	M1	oe full method to work out ABC or BAC	
	or (angle <i>BAC</i> =) [53.1, 53.2]			
13 cont	$7 \times \cos$ (their [36.8, 36.9]) or $7 \times \sin$ (their [53.1, 53.2]) or 5.6 or \tan (their [36.8, 36.9]) = $\frac{6}{EH}$ or \tan (their [53.1, 53.2]) = $\frac{EH}{6}$	M1dep	oe full method to work out <i>BC</i> or partial method to work out <i>EH</i>	
	6 ÷ 4.2 × their 5.6 or 8 or 6 ÷ tan (their [36.8, 36.9]) or 6 × tan (their [53.1, 53.2])	M1dep	oe full method to work out <i>EH</i> may be on diagram as <i>EH</i> or FG implied by 24 as the area of the larger triangle or 60 as the area of the rectangle	
	$0.5 \times$ their 8×6 or 24 and their 8×7.5 or 60	M1dep	oe eg $0.5 \times$ their $5.6 \times 4.2 \times (6 \div 4.2)^2$ and their 8×7.5 or $0.5 \times$ their $8 \times (7.5 + 13.5)$	
	84	A1		
	Additional Guidance			
	Up to M3 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			

Q	Answer	Mark	Comment	
	137 500 × 0.08 or 11 000	M1	oe eg 137 500 × 1.08 – 137 500	
	their 11 000 ÷ 0.4 or 27 500	M1dep	oe may be seen in stages eg $11000 \div 40 = 275$ and 275×100	
14	their 27 500 × 6 M1dep oe eg 137 500 + 27 500			
14	165 000	A1	SC2 2227500	
	Ad	Buidance		
	Up to M1 may be awarded for correct answer, even if this is seen amongst		•	
	SC2 is from starting with 137 500 × 1			

Q	Answer	Mark	Comments
15	$1 \text{ cm}^2 = 100 \text{ mm}^2$	B1	

Q	Answer	Mark	Comment
16	$y = x^3 + 1$	B1	

Q	Answer	Mark	Comment
17	$\frac{5}{2}$	B1	

Q	Answer	Mark	Comment		
	Median = 99	B1	implied by correct line on box plot		
	Lower quartile = 96	B1	implied by correct start of box		
	Upper quartile = 109	B1	implied by correct end of box		
18(a)	Fully correct box plot	B1ft	ft their stated median, LQ and UQ whiskers must be correct		
	Additional Guidance				
	First 3 marks can be awarded even if a box plot is not drawn				

Q	Answer	Mark	Comment	
	Home and valid reason referring to median	B1ft	eg Home and median is h games)	nigher (in home
			ft their box plot or their valu	ues
	Add	ditional G	Guidance	
	Strict ft			
	Values for the medians do not need t must be 106 and correct for their box	ed, but if stated they		
	Use of any other measure along with			
	eg Home as median is higher and so	gest value	В0	
18(b)	106 is bigger than 99 so Home		B1	
	Home matches as the average was 7		B1	
	Median home 106 Median away is 9	ome	B1	
	Median home 106 Median away is 9		В0	
	Home as my box plot shows it			В0
	Home. The mean is 7 more			В0
	Home as the average is higher			В0
	They generally do better in home ma	tches so l	Home	В0

Q	Answer	Mark	Comme	nt
	Away and valid reason referring to interquartile range	B1ft	eg Away and interquar (in away games)	tile range is lower
			alues	
	Add	ditional G	Guidance	
	Strict ft			
	Values for the interquartile ranges do they must be 22 and correct for their		to be stated, but if stated	
	Answer states that ranges are equal	B1		
	Answer based on range only	В0		
	Use of any other measure (apart from range) along with correct response is B0			
19(0)	eg Away as IQR is lower and the upp	В0		
18(c)	13 is lower than 22 so Away	B1		
	Away matches as the spread was 9 lo	B1		
	Away matches as the spread was low	В0		
	Away because the box is narrower	B1		
	IQR home 22 IQR away is 13 So A	B1		
	IQR home 22 IQR away is 13	В0		
	Away as my box plot shows it	В0		
	Away. The LQ is bigger			В0
	Away as the average is lower			В0
	They generally do worse in away mat	tches so A	Away	В0

Q	Answer	Mark	Comme	nt
	$\frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$ or $-\frac{1}{6} \pm \sqrt{\frac{5}{3} + \frac{1}{36}}$	M1	oe eg $\frac{-1 \pm \sqrt{1+60}}{6}$ or $-\frac{1}{6} \pm \sqrt{\frac{60}{36} + \frac{1}{36}}$	
	$\frac{-1 \pm \sqrt{61}}{6}$ or $-\frac{1}{6} \pm \sqrt{\frac{61}{36}}$ or 1.135 and -1.468	A1	oe two solutions $ eg -\frac{1}{6} + \frac{1}{6} \sqrt{61} \text{ and } -\frac{1}{6} - \frac{1}{6} \sqrt{61} $ allow decimal solutions rounded to at least 1 dp $ eg \text{ allow } 1.14 \text{ and } -1.5 $	
	Ad	ditional G	Guidance	
	Both solutions correct	M1A1		
	Both solutions seen in working but only one on answer line			M1A0
19	Ignore conversion attempt after corre only one solution is subsequently sel			
	Working must be for two solutions to score $ eg \; \frac{-1+\sqrt{1^2-4\times3\times-5}}{2\times3} \; \text{not recovered} $			МО
	Square root sign should cover all appear $eg -\frac{1}{6} \pm \sqrt{\frac{5}{3}} + \frac{1}{36} \text{ not recovered}$	МО		
	Fraction line should be under all appropriate work unless recovered eg $-1 \pm \frac{\sqrt{61}}{6}$ not recovered			МО
	One solution correct does not imply M1			
	Both solutions seen in working but sig	gns transp	oosed on answer line	M1A0
	$\sqrt{(1^2-4\times3\times-5)}$ is correct for $\sqrt{1^2-4}$	- 4 × 3 × -5	- i	

Q	Answer	Mark	Commer	nt	
	Alternative method 1				
	7 × 5 × 11 or 385		oe		
	or	M1			
	$3 \times 2 \times 4$ or 24				
	or				
	$\frac{3}{7}$ or $\frac{2}{5}$ or $\frac{4}{11}$				
	$\frac{3 \times 2 \times 4}{7 \times 5 \times 11}$ or $\frac{24}{385}$ or 0.062()	M1dep	oe eg $\frac{3}{7} \times \frac{2}{5} \times \frac{4}{11}$		
	6.2()		allow 6 with M2 scored		
	or	A1	or		
	0.062() and 0.05		allow 0.06 and 0.05 with	M2 scored	
	Alternative method 2				
20	$3 \times 2 \times 4$ or 24	M1	oe		
	$0.05 \times 7 \times 5 \times 11$ or 0.05×385 or 19(.25) or 19.3	M1	oe		
	24 and 19(.25)				
	or	A1			
	24 and 19.3				
	Additional Guidance				
	Up to M1 may be awarded for correct answer, even if this is seen amongst				
	Alt 1 6 or 0.06 without M2 scored is	s A0			
	Alt 1 6.2() with no working	M2A1			
	Alt 2 24 and 19 with no working	M2A1			
	Do not allow any misreads				

Q	Answer	Mark	Comment		
	Alternative method 1				
	$6\left(\frac{3x+9}{5}\right)-1$	M1	oe eg $\frac{18x + 49}{5}$		
	17	A1	SC1 8.4 oe value		
	Alternative method 2				
	$\frac{3 \times 2 + 9}{5}$ or 3 or g(3)	M1	oe eg 6 × 3 – 1		
21(a)	17	A1	SC1 8.4 oe value		
()	Additional Guidance				
	Answer 17			M1A1	
	Working out f(2) and g(2) is M0 unless recovered				
	eg1 $\frac{3 \times 2 + 9}{5} = 3$ $6 \times 2 - 1 = 11$			M0A0	
	eg2 3 × 11 = 33			M0A0	
	17 followed by further work eg $17 \times 3 = 51$			M1A0	
	SC1 is for fg(2)				

Q	Answer	Mark	Comme	nt
	Alternative method 1			
	$\frac{5x-9}{3} \text{or} \frac{5y-9}{3}$ or $\frac{5\times 8-9}{3}$	M1	oe	
	$\frac{31}{3}$ or $10\frac{1}{3}$ or $10.3()$	A1		
	Alternative method 2			
21(b)	$\frac{3x+9}{5}=8$	M1	oe equation	
	$\frac{31}{3}$ or $10\frac{1}{3}$ or $10.3()$	A1		
	Ad	ditional G	Buidance	
	$\frac{31}{3}$ or $10\frac{1}{3}$ or $10.3()$			M1A1
	Ignore conversion attempt after corre	ect answer	seen	

Q	Answer	Mark	Comment	
	$x(x^2 - 49)$ or $(x^2 + 7x)(x - 7)$ or $(x^2 - 7x)(x + 7)$	M1	oe partial factorisation e any order eg $(x^2 - 49)x$	eg $x(x^2 - 7^2)$
	x(x+7)(x-7)	A1	oe full factorisation any order eg $(x + 7)x(x)$	-7)
	Additional Guidance			
22	M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
22	Ignore correctly placed multiplication signs			
	Ignore missing final bracket eg $x(x-7)(x+7)$			M1A1
	Allow x to be 1x throughout			
	Allow x to be $(x + 0)$ or $(x - 0)$ throughout			
	Ignore any equating to zero			
	Ignore any attempt to 'solve'			
	x(-7+x)(7+x)			M1A1

Q	Answer	Mark	Comment
	1.5 × 6 or 9 or 3.5 × 4 or 14 or 5 × 2 or 10 or 4.5 × 4 or 18 or 2.5 × 4 or 10	M1	oe values 9, 14, 10 or 18 must be in the correct row in the table or linked to the correct bar on the histogram
23(a)	1.5 × 6 × 3 or 9 × 3 or 27 or 3.5 × 4 × 8 or 14 × 8 or 112 or 5 × 2 × 11 or 10 × 11 or 110 or 4.5 × 4 × 14 or 18 × 14 or 252 or 2.5 × 4 × 18 or 10 × 18 or 180 or 681	M1dep	oe values 27, 112, 110, 252 or 180 must be in the correct row in the table
	(their 27 + their 112 + their 110 + their 252 + their 180) ÷ (their 9 + their 14 + their 10 + their 18 + their 10) or 681 ÷ 61	M1dep	oe full correct method eg (their 27 + their 112 + their 110 + their 252 + their 180) ÷ 61
	[11.16, 11.2]	A1	accept 11 with M3 scored and no errors

Additional Guidance is on the next page

		Add	ditional Guidar	nce	
	Up to M2 may be awa answer, even if this is				t
	Time, x, (hours)	Frequency	Midpoint		
	0 ≤ <i>x</i> < 6	9	3	27	
	6 ≤ <i>x</i> < 10	14	8	112	M1M1
	10 ≤ <i>x</i> < 12	10	11	110	IVITIVIT
	12 ≤ <i>x</i> < 16	18	14	252	
	16 ≤ <i>x</i> < 20	10	18	180	
-					
	Time, x, (hours)	Frequency	Midpoint		
23(a)	0 ≤ <i>x</i> < 6	9	3	27	M1M1
cont	6 ≤ <i>x</i> < 10	16	8	128	IVITIVIT
	10 ≤ <i>x</i> < 12	10	11	110	
	12 ≤ <i>x</i> < 16	20	14	280	
	16 ≤ <i>x</i> < 20	10	18	180	
	Time, x, (hours)	Frequency	Midpoint		
	0 ≤ <i>x</i> < 6	1.5	3	4.5	
	6 ≤ <i>x</i> < 10	3.5	8	28	MOMO
	10 ≤ <i>x</i> < 12	5	11	55	
	12 ≤ <i>x</i> < 16	4.5	14	63	
	16 <i>≤ x</i> < 20	2.5	18	45	
	(4.5 + 28 + 55 + 63) = 195.5 ÷ 17 = 11.5		3.5 + 5 + 4.5 + 2	2.5)	M0A0

Q	Answer	Mark	Comme	ent	
	Valid reason	B1	eg the data is grouped or the exact values are or the midpoints are es		
	Additional Guidance				
	Because we are using midpoints			B1	
23(b)	Midpoint is an average			B1	
	There are no raw data			B1	
	Numbers are rounded			В0	
	There are no data to use			В0	
	The answer is a decimal			В0	
	Valid reason with an irrelevant staten	B1			

Q	Answer	Mark	Comment	
	247 – 170 or 77	M1	oe may be on diagram	
	$23 \times 1\frac{1}{2}$ or 34.5	M1	oe eg 23 + 11.5 or 23 × 90 ÷ 60 or 23 × 1.5 may be on diagram	
	(their 34.5) ² + 60^2 – 2 × their 34.5 × 60 × cos (their 77) or [3858, 3859]	M1dep	oe dep on at least one M scored	
24	$\sqrt{\text{their} [3858, 3859]}$ or 62.1()	M1dep	oe $eg \sqrt{34.5^2 + 60^2 - 2 \times 34.5 \times 60 \times \cos 77}$ dep on 3rd M1	
	No and 62.1()	A1	oe eg 62.1 and the ship is further away accept No and 62 with M4 scored	
	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	2nd M1 Do not accept 23 × 1.30 unless recovered			

Q	Answer	Mark	Comment	
	Any one of $(\overrightarrow{QW} =) \mathbf{a} + \mathbf{b} - \frac{1}{3} \mathbf{a}$ $(\overrightarrow{WX} =) \frac{1}{3} \mathbf{a} + \frac{1}{2} \mathbf{b}$ $(\overrightarrow{QX} =) \mathbf{a} + \mathbf{b} + \frac{1}{2} \mathbf{b}$	M1	oe eg $(\overrightarrow{QW} =) \frac{2}{3} \mathbf{a} + \mathbf{b}$ or $(\overrightarrow{WX} =) -\frac{2}{3} \mathbf{a} + \mathbf{b} + \mathbf{a} - \frac{1}{2} \mathbf{b}$ or $(\overrightarrow{QX} =) \mathbf{a} + \frac{3}{2} \mathbf{b}$ allow use of \overrightarrow{WQ} and/or \overrightarrow{XW} and/or \overrightarrow{XQ}	
25	Any two of $(\overrightarrow{QW} =) \mathbf{a} + \mathbf{b} - \frac{1}{3} \mathbf{a}$ $(\overrightarrow{WX} =) \frac{1}{3} \mathbf{a} + \frac{1}{2} \mathbf{b}$ $(\overrightarrow{QX} =) \mathbf{a} + \mathbf{b} + \frac{1}{2} \mathbf{b}$	M1dep	oe allow use of \overrightarrow{WQ} and/or \overrightarrow{XW} and/or \overrightarrow{XQ}	
	Any valid pair of vectors and indication that one vector is a multiple of the other $eg \ \overrightarrow{QW} = \frac{2}{3} \mathbf{a} + \mathbf{b}$ and $\overrightarrow{WX} = \frac{1}{3} \mathbf{a} + \frac{1}{2} \mathbf{b}$ and $\frac{2}{3} \mathbf{a} + \mathbf{b} = 2 \left(\frac{1}{3} \mathbf{a} + \frac{1}{2} \mathbf{b} \right)$	A1	eg $\overrightarrow{QW} = \frac{2}{3}\mathbf{a} + \mathbf{b}$ and $\overrightarrow{XQ} = -\mathbf{a} - \frac{3}{2}\mathbf{b}$ and $3\overrightarrow{QW} = -2\overrightarrow{XQ}$ or $\overrightarrow{QX} = \mathbf{a} + \frac{3}{2}\mathbf{b}$ and $\overrightarrow{WX} = \frac{1}{3}\mathbf{a} + \frac{1}{2}\mathbf{b}$ and \overrightarrow{WX} is $\frac{1}{3}$ of QX and \overrightarrow{WX} is parallel to QX	
	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			

Q	Answer	Mark	Comment		
	6 × 10 ÷ 2 or 30 or 6 × 90 or 540 or 570	M1	oe eg $\frac{1}{2} \times \frac{6}{10} \times 10^2$ or $\frac{1}{2} \times (100 + 90) \times 6$ may be on diagram		
26	$800 - 6 \times 10 \div 2 - 6 \times 90$ or $800 -$ their $30 -$ their 540 or $800 -$ their 570 or 230	M1dep	oe full method for remaining distance may be on diagram may be embedded eg 230 ÷ 40		
	$\frac{1}{2} \times (v + 6) \times 40 = $ their 230 2 × their 230 ÷ 40 – 6	M1dep	oe eg $20v + 120 =$ their 230 any letter		
	5.5	A1	oe value		
	Additional Guidance				
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts				

Q	Answer	Mark	Comme	nt
	$\frac{n}{25}$ and $\frac{n-1}{24}$	M1	oe may be implied eg $\frac{n(n-1)}{600}$	
	$n^2 - n - 210 \ (= 0)$	M1dep	oe with all terms fully simplified $eg n^2 - n = 210$	
	$(n-15)(n+14)$ or $\frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times -210}}{2 \times 1}$ or $\frac{1}{2} \pm \sqrt{210 + \frac{1}{4}}$	M1	oe eg $\frac{1\pm\sqrt{841}}{2}$ or $\frac{1\pm29}{2}$ or 0.5 ± 14.5 ft their 3-term quadratic	
	15	A1	15 and –14 is A0	
	Additional Guidance			
	Answer 15 with no working or from trial			M3A1
27	Beware Answer 15 from incorrect working			
	eg $\frac{n}{25} \times \frac{n}{25} = \frac{7}{20}$ $n^2 = 218.75$ $n = 15$			МОМОМОАО
	Allow n to be N or x etc			
	3rd M1 Allow (-1) ² to be 1 ²			
	3rd M1 Do not allow $(-1)^2$ to be -1^2 unless recovered			
	3rd M1 Allow ± to be +			
	3rd M1 Square root sign should cover all appropriate work unless recovered eg $\frac{1\pm\sqrt{1+840}}{2}$ not recovered			MO
	3rd M1 Fraction line should be under all appropriate work unless recovered eg 1 $\pm \frac{\sqrt{841}}{2}$ not recovered			МО
	3rd M1 $\sqrt{((-1)^2 - 4 \times 1 \times -210)}$ is correct for $\sqrt{(-1)^2 - 4 \times 1 \times -210}$			

Q	Answer	Mark	Comment		
	$\frac{EP}{\sin 35} = \frac{29}{\sin 114}$ or $\frac{29 \sin 35}{\sin 114}$	M1	oe eg $\frac{\sin 35}{EP} = \frac{\sin 114}{29}$ or $\frac{EP}{\sin 35} = [31.7, 31.7445]$		
28	[18.2, 18,21]	A1	accept 18 with M1 scored		
	Additional Guidance				
	<i>EP</i> may be <i>PE</i> or <i>x</i> etc				
	Do not regard 31 as a misread of 35				