

GCSE MATHEMATICS 8300/1H

Higher Tier Paper 1 Non-Calculator

Mark scheme

November 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q		Answer	Mark	Comment
1	28 9		B1	

Q	Answer	Mark	Comment
2	36	B1	

Q	Answer	Mark	Comment
3	3 1000	B1	

Q	Answer	Mark	Comment
4	$3x \equiv x + 2x$	B1	

Q	Answer	Mark	Commer	nts
	3 + 7 or 10	M1	implied by 10 symbols	or 6.2
	62 ÷ their 10 × 3 or 6.2 × 3 or 18.6 or 62 ÷ their 10 × 7 or 6.2 × 7 or 43.4	M1dep	oe full method to work o	out either number
5	18.6 or $\frac{93}{5}$ or $18\frac{3}{5}$ and 43.4 or $\frac{217}{5}$ or $43\frac{2}{5}$	A1	oe decimals, fractions or mixed numbers either order	
	Additional Guidance			
	18.6 and 43.4 in working, but truncated or rounded to 18 or 19 and 43 on the answer line			M1M1A1
	62 = 10x			M1
	$\frac{x}{62} = \frac{3}{10}$ or $\frac{y}{62} = \frac{7}{10}$			M1

Q	Answer	Mark	Comments		
	Definitely true Cannot be true Might be true	В3	B1 for each any clear indication		
6	Additional Guidance				
	Only a cross in a row, mark the cross				
	A tick and cross(es) in a row – mark				
	More than one tick in a row scores B	row			

Q	Answer	Mark	Comments
7(a)	$\begin{pmatrix} 4\\ -1 \end{pmatrix}$	B2	B1 $\begin{pmatrix} 4 \\ \dots \end{pmatrix}$ or $\begin{pmatrix} \dots \\ -1 \end{pmatrix}$ or $(4, -1)$ SC1 $\begin{pmatrix} -4 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$
	Ad	ditional G	
	Ignore fraction lines		

Q	Answer	Mark	Commen	ts
	$\begin{pmatrix} 12\\8 \end{pmatrix}$	B1		
7(b)	Additional Guidance			
7(b)	$4\begin{pmatrix}3\\2\end{pmatrix}$ or $\begin{pmatrix}12\\8\end{pmatrix}$ in working with answer $\begin{pmatrix}3\\2\end{pmatrix}$			B0
	Ignore fraction lines			

Q	Answer	Mark	Comments
7(c)	$\begin{pmatrix} 0\\ -2 \end{pmatrix}$	B1	

Q	Answer	Mark	Commer	its	
	Valid common denominator for subtraction with at least one numerator correct	M1	eg $\frac{21}{30} - \frac{8}{30}$ or $\frac{13}{30}$ or $\frac{105}{150} - \frac{40}{150}$ or $\frac{65}{150}$ condone decimals in num		
8	their $\frac{13}{30} \times \frac{3}{2}$ or $\frac{\text{their } 13 \div 2}{\text{their } 30 \div 3}$ $\frac{13}{20}$ or $\frac{39}{60}$	M1 A1	oe producttheir $\frac{13}{30}$ can be any single fraction,mixed number or decimal other thantheir $\frac{13}{30}$ inverted or $\frac{7}{10}$ or $\frac{4}{15}$ condone decimals in numerator(s)correct answer not in correct fractionform eg $\frac{6.5}{10}$ scores M1M1oe fraction		
	All SC2 $\frac{29}{20}$ oe fraction or mixed number Additional Guidance				
	If 10 or 15 is used as the common denominator, both numerators must be correct for the first mark				
	Correct fraction in working with incorrectly simplified fraction on answer line			M2A1	
	Correct fraction in working with conv	M2A0			
	$\frac{65}{150} \div \frac{2}{3} = \frac{32}{50}$	M1M0A0			
	$\frac{65}{150} \div \frac{2}{3} = \frac{32.5}{50}$ with no further w	orking		M1M1A0	

Q	Answer	Mark	Commen	nts	
	$\frac{12}{4} \leq x \text{ or } 3 \leq x$ or $x < \frac{25}{4} \text{ or } x < 6.25 \text{ or } x \leq 6$ or $x < 7$	M1	oe fully correct inequality is $\frac{12}{4} \le x < \frac{25}{4}$ or $3 \le x < 6.25$		
9	3 4 5 6 with no extras	A1	any order SC1 3 4 5 6 with one or any three of 3 4 5 no extras or 12 16 20 24		
	Additional Guidance				
	Ignore incorrect evaluations of 25 \div 4 if correct answer is given eg 3 $\leq x <$ 6.5 and answer 3 4 5 6			M1A1	
	3×4 and 4×4 and 5×4 and 6×4 identified as only correct multiplications with no answer given implies M1			M1A0	

Q	Answer	Mark	Commen	ts
	120 ÷ 4 × 3 or 90	M1	oe implied by 90 in the box a circles	and outside the
	14 + 19 + their 90 – 120 or 14 + 19 – 120 ÷ 4 or 3 or 19 – their 3 in C only and 14 – their 3 in D only	M1	oe their 90 must be > 87 0 < their 3 < 14	7
	16, 3, 11 and 90 in correct positions	A1	SC1 their 4 Venn diagra 120, allow a blank interse	
	Additional Guidance			
10	Allow up to M1M1 for working outside Venn diagram but Venn diagram takes precedence over working			
	3 in the intersection with 90 in the box and outside the circles M1M1			M1M1
	3 in the intersection with a different n the circles	umber to	90 in the box and outside	M0M1
$ \xi \begin{bmatrix} C & & D \\ & 16 & 3 & 11 \\ & & & 90 \end{bmatrix} $		M1M1A1		

Q	Answer	Mark	Commen	ts
11	Answer $3^{11} (: 3^7)$ or $3^6 : 3^2$ or $3^5 : 3^{(1)}$ or $\frac{a}{3^7}$ or 177147 : 2187 $\frac{3^{11}}{3^7} (: 1)$ or $\frac{3^6}{3^2} (: 1)$ or $3^6 \times 3^{-2} (: 1)$ or $\frac{3^5}{3^{(1)}} (: 1)$ or $3^{-1} \times 3^5 (: 1)$ or $3^4 (: 1)$ or $\frac{177147}{2187} (: 1)$	M1 M1dep	oe eg 729 : 9 or 243 : 3^n may be implied by a m string of n 3s a can be any value other oe left-hand side with one components eg $\frac{729}{9}$: 1 or $243 \times \frac{1}{3}$: 1 allow (: 1) to be (: 3^0) 3^n may be implied by a m string of n 3s	3 nultiplication • than 3 ⁷ e or two
	81 : 1	A1		
	Ade	ditional G	luidance	
	$\frac{3^6 \times 3^5}{3^7}$ (: 1) with no further work			M1M0A0
	81 : 1 or 3^4 (: 1) could be seen from eg $\frac{9^{11}}{3^7} = 3^4$ Answer 81 : 1	n incorrect	working	M1M0A0

Q	Answer	Mark	Comments
12	11 : 10	B1	

Q	Answer	Mark	Comment
13	0.789 [•]	B1	

Q	Answer	Mark	Comme	nt
	Explanation that the ratio and graph do not match	B1	eg This is the graph of $y = 2$ This is the graph of $x : y$ It should go through (3,	= 1 : 2
	Explanation that the domain of the graph is incorrect	B1	eg The graph goes from <i>x</i> =	= 0, not <i>x</i> = –3
	Ado	ditional G	auidance	
	3 : 6 is 1 : 2		B1	
	(3, 6) doesn't work			B1
14	The gradient is 2, not $\frac{1}{2}$			B1
	He got <i>x</i> and <i>y</i> mixed up			B1
	His graph is not going up in the ratio	2 : 1		B0
	The gradient is 2			B0
	He didn't follow the ratio The graph doesn't have negative numbers			В0
				B1
	There are no minuses			B1
	It doesn't go from –3 to 3			B1
	The axes should be the same length			B0

Q	Answer	Mark	Comment
	$6x^2 + 8x - 15x - 20$ or $6x^2 - 7x - 20$	M1	allow 4 terms with 3 correct or $6x^2 - 7x + k$, where k is a non-zero number
	$-11x^{2} + 22x$ or $5x^{2} - 15x - 5$	M1	
	$6x^{2} + 8x - 15x - 20$ or $6x^{2} - 7x - 20$ and $-11x^{2} + 22x$ and $5x^{2} - 15x - 5$	A1	
15	$6x^2 + 8x - 15x - 20$ or $6x^2 - 7x - 20$ and $-11x^2 + 22x$ and $5x^2 - 15x - 5$ and -25	A1	
	Ade	ditional G	Guidance
	Allow terms seen in a grid		
	Sign errors cannot be recovered		
	Ignore equating the expression to zer	<i>°</i> 0	

Q	Answer	Mark	Comment
	$4 = 0^{2} + p \times 0 + r$ or r = 4	M1	oe equation may be implied
16	$1^{2} + p (\times 1) + $ their 4 = 3 or $p = -2$	M1	oe equation allow their 4 to be r
	8 ² + (their –2) × 8 + their 4 or 64 – 16 + 4	M1dep	oe dep on M1M1 do not allow their 4 to be <i>r</i>
	52	A1	

Q	Answer	Mark	Comment
17(a)	51, 58 and 60	B1	

Q	Answer	Mark	Comment
17(b)	160 < <i>h</i> ≤ 170	B1	

Q	Answer	Mark	Comme	nt
	Points plotted with upper class boundaries and cf values condone (150, 0) omitted or incorrectly plotted for this mark only	B1ft	$\pm \frac{1}{2}$ square ft their cumulative freque must be increasing ignore bars drawn if poir	
	Smooth curve or polygon	5.4	ft their 5 or 6 points (poin be omitted)	nt with cf 0 may
		B1ft	must be increasing and straight line	not a single
	Additional Guidance			
17(c)	For the second mark,			
	the points must be evenly spaced			
	accept an omission of the point with o starting point for the pattern of their p		o not accept an incorrect	
	accept a horizontal line drawn from th continuation of the curve or polygon	neir final p	oint, but do not accept a	
	Points plotted at lower class boundar smooth curve or polygon for their poin	B0B1		
	Bars drawn with correct curve	B1B1		
	Bars drawn without curve but with co	rrect point	ts clearly plotted	B1B0
	Bars drawn without correct curve or c	orrect poi	ints plotted	B0B0

Q	Answer	Mark	Comment		
	Alternative method 1				
	Vertical line drawn from 176 to curve or polygon	M1	implied by correct reading for their increasing curve or polygon or mark at correct place on their increasing curve or polygon or on the vertical axis $\pm \frac{1}{2}$ square		
	Correct value for 60 – their reading		ft their increasing curve or polygon		
	or	A1ft	answer must be an integer		
	correct value for their 60 – their reading		their 60 must be from an increasing curve or polygon		
	Alternative method 2				
17(d)	$2+7+\frac{4}{10} \times 35$ or $2+7+14$				
	or				
	$4 + 12 + \frac{6}{10} \times 35$	M1			
	or 4 + 12 + 21				
	or 37				
	23	A1			
	Additional Guidance				
	In alternative method 1 condone the or required section (170 – 180) as long a increasing throughout	•			
	Answer 23 not from alternative metho	od 2 must	match their graph		

Q	Answer	Mark	Comment	
	Alternative method 1 – combining the ratios			
	21:35 and 35:20 or (3:5 and) 5: $\frac{20}{7}$ or $\frac{21}{5}$:7 (and 7:4)	M1	oe making the E term common allow as fractions with a common denominator eg $\frac{21}{35}$ and $\frac{20}{35}$	
18	21:35:20 or 3:5: $\frac{20}{7}$ or $\frac{21}{5}$:7:4 or $\frac{21/5}{76/5}$ or $\frac{3}{76/7}$	M1dep	oe allow as integers 21 and 35 and 20 or as fractions with a common denominator eg $\frac{21}{35}$ and $\frac{35}{35}$ and $\frac{20}{35}$	
	<u>21</u> 76	A1		
	Alternative method 2 – based on D			
	$\frac{5(D)}{3}$ and $\frac{20(D)}{21}$	M1	oe	
	$\frac{21(D)}{21} + \frac{35(D)}{21} + \frac{20(D)}{21}$ or $\frac{76(D)}{21}$	M1dep	oe with common denominator	
	<u>21</u> 76	A1		

The mark scheme for Question 18 continues on the next page

	Alternative method 3 – based on E		
	$\frac{3(E)}{5}$ and $\frac{4(E)}{7}$	M1	oe
	$\frac{21(E)}{35} + \frac{35(E)}{35} + \frac{20(E)}{35}$ or $\frac{76(E)}{35}$	M1dep	oe with common denominator
	21 76	A1	
18	Alternative method 4 – based on F		
(cont)	$\frac{21(F)}{20}$ and $\frac{7(F)}{4}$	M1	oe
	$\frac{21(F)}{20} + \frac{35(F)}{20} + \frac{20(F)}{20}$ or $\frac{76(F)}{20}$	M1dep	oe with common denominator
	<u>21</u> 76	A1	
	Additional Guidance		
	Allow unrounded decimal values thro	ughout	

Q	Answer	Mark	Commer	nt
19(a)	$\left(\frac{4}{5}\right)^{2} \text{ or } \frac{4^{2}}{5^{2}} \text{ or } \left(\frac{25}{16}\right)^{-1}$ or $\frac{1}{\left(\frac{5}{4}\right)^{2}}$ or $\frac{1}{5^{2}/4^{2}}$ or $\left(\frac{1}{5/4}\right)^{2}$ or $\frac{1}{\frac{15}{16}}$ or $\frac{1}{\frac{25}{16}}$	M1	missing brackets must be accept a correct decimal for any fraction eg $\frac{1}{1.25^2}$	
	<u>16</u> 25	A1	oe fraction or decimal	
	Ado	ditional C	Guidance	
	Ignore any attempt to convert a corre	ct fractior	n into a decimal	M1A1

Q	Answer	Mark	Commer	nt
19(b)	$\left(\sqrt{\frac{9}{100}}\right)^{3} \text{ or } \frac{3^{3}}{10^{3}} \text{ or } \left(\frac{3}{10}\right)^{3}$ or $\sqrt{\frac{9^{3}}{100^{3}}} \text{ or } \sqrt{\left(\frac{9}{100}\right)^{3}}$ or $\frac{\left(\sqrt{9}\right)^{3}}{\left(\sqrt{100}\right)^{3}}$ or or $\sqrt{\frac{729}{1000000}}$ or $\frac{\sqrt{729}}{\sqrt{1000000}}$	M1	oe with 0.09 for $\frac{9}{100}$ or or 3^2 for 9 or 10^2 for 100 missing brackets must be	0
	$\frac{27}{1000}$ or 0.027	A1		
	Ade	ditional G	auidance	
	Ignore any attempt to convert a corre	ct fractior	n into a decimal	M1A1
	For M1 do not allow power $\frac{1}{2}$ with no	square r	oot	

Q	Answer	Mark	Comment		
	Alternative method 1				
	$(x + 15)^2$	M1			
	$x^{2} + 15x + 15x + 225$ or $x^{2} + 30x + 225$ or $b = 30$ or $c = 225$	M1dep			
	b = 30 and $c = 225$	A1			
	Alternative method 2: simultaneou	is equatio	ons using $x = -15$ and $b^2 - 4ac = 0$		
	$(-15)^2 - 15b + c = 0$ or $b^2 - 4 (\times 1) \times c = 0$	M1	oe do not allow missing brackets unless recovered		
20	$b^2 - 4 (x \ 1) \times (15b - 225) = 0$ or $b^2 - 60b + 900 = 0$ or $(b - 30)^2 = 0$ or $b = 30$ or $c = 225$	M1dep	oe method to eliminate one unknown eg $\left(\frac{225+c}{15}\right)^2 - 4c = 0$		
	b = 30 and $c = 225$	A1			
	Alternative method 3: using $b^2 - 4ac = 0$ in the quadratic formula				
	$-15 = \frac{-b}{2(\times 1)}$	M1	oe		
	<i>b</i> = 30	M1dep			
	b = 30 and $c = 225$	A1			
	Additional Guidance				
	30 and 225 may come from incorrect eg do not allow $c = 225$ from $(x - 15)$	-			

Q	Answer	Mark	Comme	nt
	Alternative method 1	•		
	10x = 6.11 and $x = 0.61or100x = 61.11$ and $10x = 6.11$	M1	oe two powers of 10	
	10x - x = 6.11 0.61 or $9x = 5.5$	M1dep	oe subtraction of power eg $100x - 10x = 61.1$	
	$\frac{11}{18}$ or $\frac{55}{90}$ or $\frac{605}{990}$	A1	oe fraction	
	Alternative method 2	1		
21	(0.61 =) 0.6 + 0.01 and 10x = 0.11 and $x = 0.01or100x = 1.11$ and $10x = 0.11$	M1	oe two powers of 10	
21	10x - x = 0.11 0.01 or $9x = 0.1$ and $\frac{6}{10}$ + their $\frac{1}{90}$	M1dep	oe subtraction of powers evaluated as a fraction a eg $1000x - 10x = 11.11$ or $990x = 11$ and $\frac{3}{5} + \frac{11}{990}$ sum of correct fractions	and added to $\frac{6}{10}$ – 0.11
	$\frac{11}{18}$ or $\frac{55}{90}$ or $\frac{605}{990}$	A1	oe fraction	
	Additional Guidance			
	Ignore incorrect simplification of a correct fraction eg $\frac{605}{990}$ and $\frac{121}{190}$ M1M1A			M1M1A1
	Otherwise correct fraction with fraction(s) or decimal(s) as the numerator and/or denominator, eg $\frac{5.5}{9}$ M1M1A0			

Q	Answer	Mark	Comment		
	Alternative method 1				
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point		
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient		
	$8 = \text{their} -\frac{1}{2} \times 4 + c$ or c = 10	M1dep	oe equation in c (any letter) dep on previous mark		
22	$0 = \text{their} - \frac{1}{2}x + \text{their } 10$	M1	oe equation in x ft their equation of the form $y = mx + c$ where <i>m</i> and <i>c</i> are numbers $\neq 0$		
~~~~	20	A1	condone (20, 0)		
	Alternative method 2				
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point		
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient		
	$\frac{8-0}{4-x} = \text{their} -\frac{1}{2}$	M1dep	oe equation in $x$ dep on previous mark		
	their 2 × (8 – 0) = their –1 × (4 – $x$ ) or 16 = –4 + $x$	M1dep	oe linear equation in $x$		
	20	A1	condone (20, 0)		

### The mark scheme for Question 22 continues on the next page

	Alternative method 3				
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point		
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient		
	$y - 8 = \text{their} - \frac{1}{2} \times (x - 4)$	M1dep	oe equation eg $x + 2y = 20$ dep on previous mark		
	$0-8 = \text{their} -\frac{1}{2} \times (x-4)$	M1	oe linear equation in $x$ ft their equation in $y$ and $x$		
22 (cont)	20	A1	condone (20, 0)		
	Alternative method 4				
	$4^2 + 8^2$ and $(x-4)^2 + 8^2$	M1			
	$x^2 = 4^2 + 8^2 + (x - 4)^2 + 8^2$	M1dep	oe equation in <i>x</i>		
	$x^2 = 16 + 64 + x^2 - 8x + 16 + 64$	M1dep	oe equation in $x$ with brackets expanded and squares evaluated		
	8x = 16 + 64 + 16 + 64 or $8x = 160$	M1dep	oe linear equation in $x$		
	20	A1	condone (20, 0)		

Q	Answer	Mark	Comment		
	Alternative method 1				
	$(\sin 30 =) \frac{1}{2}$		oe may be implied by $(4 \times \sin 30 =) 2$		
	or $(\tan 30 =) \frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$	M1	may be implied by correct position in a multiplication string		
	or (cos 30 =) $\frac{\sqrt{3}}{2}$				
	$4 \times \frac{1}{2} \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2}$	M1dep	oe with all trig values correct		
	2 \sqrt{3} 2	maop	condone any order unless error seen		
	1 with all three values seen	A1	implied by 90 with all three values seen		
	90 with M1M1A1 scored	A1	accept any angle of the form $90 + 360n$ , where <i>n</i> is an integer		
23	Alternative method 2				
	$4 \times \sin 30^{\circ} \times \frac{\sin 30^{\circ}}{\cos 30^{\circ}} \times \cos 30^{\circ}$	M1			
	$4 \times \frac{1}{2} \times \frac{\frac{1}{2}}{\sqrt{3}/2} \times \frac{\sqrt{3}}{2}$	M1dep	oe eg $4 \times \left(\frac{1}{2}\right)^2$		
	1 with $\frac{\sin 30^{\circ}}{\cos 30^{\circ}}$ and $\frac{1}{2}$ and $\frac{\sqrt{3}}{2}$ seen	A1	if cos 30° is cancelled out only $\frac{1}{2}$ need be seen		
	90 with M1M1A1 scored	A1	accept any angle of the form $90 + 360n$ , where <i>n</i> is an integer		
	Additional Guidance				
	Condone a square root sign on 1 up	to M1M1			



Q	Answer	Mark	Comment
25(a)	(x + 1)(x - 6) or $\frac{5 \pm \sqrt{(-5)^2 - 4(\times 1) \times (-6)}}{2(\times 1)}$ or $2.5 \pm \sqrt{12.25}$ or -1  and  6  identified	M1	oe do not accept missing bracket on (–5) ² unless recovered
	-1 < x < 6	A1	condone $-1 < x$ and $x < 6$

Q	Answer	Mark	Comment
	Open circles at –1 and 6 joined by line		ft their double-sided inequality in (a) if the bounds are within the number line
25(b)		B1ft	condone ft an inequality given in two parts if the bounds are within the number line
			condone ft a single-sided inequality if the bound is within the number line

Q	Answer	Mark	Comment		
	Alternative method 1				
	RPQ = y	M1	may be seen on diagram		
	RPQ = y and RQP = 180 - 2y	M1dep	may be seen on diagram		
	RQP = 2x and 2x = 180 - 2y and correct rearrangement to y = 90 - x with M1M1 awarded	A1	RQP = 2x may be implied by 'alternate segment theorem'		
26	Correct reasons given with M1M1 scored and a correct initial equation for the A mark	B1	(base angles of an) isosceles triangle (are equal) sum of the angles in a triangle is 180° alternate segment (theorem)		
	Alternative method 2				
	RPQ = y	M1	may be seen on diagram		
	RQP = 2x	M1	may be seen on diagram		
	2x + 2y = 180 and correct rearrangement to y = 90 - x with M1M1 awarded	A1			
	Correct reasons given with M1M1 scored and a correct initial equation for the A mark	B1	(base angles of an) isosceles triangle (are equal) alternate segment (theorem) sum of the angles in a triangle is 180°		

## The mark scheme for Question 26 continues on the next page

	Alternative method 3			
	RQP = 2x	M1	may be seen on diagram	
	RQP = 2x		may be seen on diagram	
	and	M1dep		
	RPQ = 180 - 2x - y			
	y = 180 - 2x - y			
	and correct rearrangement to	A1		
	y = 90 - x			
	with M1M1 awarded			
	Correct reasons given with M1M1 scored and a correct initial equation		alternate segment theorem	
	-	B1	sum of the angles in a triangle is 180°	
			(base angles of an) isosceles triangle (are equal)	
	Alternative method 4			
26 (cont)	RPQ = y	M1	may be seen on diagram	
	SP extended to T		may be seen on diagram	
	and	M1	any or no letter for $T$	
	QPT = y			
	2x + 2y = 180			
	and correct rearrangement to	A1		
	y = 90 - x			
	with M1M1 awarded			
	Correct reasons given with M1M1 scored and a correct initial equation		(base angles of an) isosceles triangle (are equal)	
	for the A mark	B1	alternate segment theorem	
			angles on a straight line sum to 180°	
	Ad	ditional G	auidance	
	Method marks can be scored using a	ngle notat	tion	
	eg $RPQ = QRP$ is equivalent to $RPQ$			

Q	Answer	Mark	Comment
	Alternative method 1		
27	$\left(\sqrt{2\frac{13}{16}}\right) \sqrt{\frac{45}{16}}$ or $\frac{\sqrt{45}}{4}$ or $\frac{3\sqrt{5}}{4}$	M1	oe conversion from a mixed number
	$\frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ or $\frac{2\sqrt{5}}{5}$	M1	oe rationalisation
	$\frac{15\sqrt{5}}{20} - \frac{8\sqrt{5}}{20}$ or	M1dep	oe with common surd in numerator and common non-surd denominator do not allow fraction(s) in numerator(s) or denominator
	$(0.75\sqrt{5} - 0.4\sqrt{5} =) 0.35\sqrt{5}$		dep on M1M1
	$\frac{7\sqrt{5}}{20}$	A1	oe in the form $\frac{a\sqrt{5}}{b}$ eg $\frac{28\sqrt{5}}{80}$
	Alternative method 2		
	$\left(\sqrt{2\frac{13}{16}}\right) \sqrt{\frac{45}{16}}$ or $\frac{\sqrt{45}}{4}$ or $\frac{3\sqrt{5}}{4}$	M1	oe conversion from a mixed number
	$\frac{\sqrt{45}\sqrt{5}}{4\sqrt{5}} - \frac{8}{4\sqrt{5}} \text{ or } \frac{15}{4\sqrt{5}} - \frac{8}{4\sqrt{5}}$ or $\frac{7}{4\sqrt{5}}$	M1dep	oe with common denominator do not allow fraction(s) in numerator(s) or denominator
	$\frac{15}{4\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} - \frac{8}{4\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ or $\frac{7}{4\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$	M1dep	oe with all denominators rationalised
	$\frac{7\sqrt{5}}{20}$	A1	oe in the form $\frac{a\sqrt{5}}{b}$ eg $\frac{28\sqrt{5}}{80}$