GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS - NUMERACY UNIT 1 - INTERMEDIATE TIER 3310U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

SUMMER 2022 MARKING SCHEME

Unit 1: Intermediate Tier	Mark	Comments
1(a) £3.80	B1	
1(b) 4 hours 20 minutes	B3	For B2 or B1, allow costs seen within repeated additions linked with the appropriate time B2 for sight of any of the following: - 260 minutes - $£ 5.40$ for 4 hours or for 240 minutes - $\quad((£ 5.80-£ 3) \div 40 \mathrm{p}=) 7$ seen or implied with 7 lots of 20 minutes considered - 140 (minutes) ($=2$ hours 20 minutes) - a final answer of 2 hours 20 minutes in the answer space B1 for sight of any of the following: - $£ 4.20$ for 3 hours or 2 hours 60 minutes, allow for 2.60 - ($£ 5.80-£ 3=) £ 2.80$ - $\quad(£ 5.80-£ 3) \div 40 \mathrm{p}(=7)$ - $\quad((£ 5.80-£ 3) \div 40 \mathrm{p}=7$ allow for 7 provided it is not from incorrect working, it should be derived from 7 lots of 40 p on to the $£ 3$, e.g. 7 lots of 40 p. Ignore further incorrect working once awarded, such as an answer of 7 hours
$\begin{aligned} & \text { 2.(Total rainfall for } 10 \text { days is } 10 \times 1.8=) 18 \\ & \begin{array}{r} \text { (Mean rainfall for } 1^{\text {st }} 11 \text { days of April) } \\ (10 \times 1.8+4) \div 11 \\ (=) 2(\mathrm{~cm}) \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	May be implied in further working (e.g. from sight of 22 (cm) total rainfall) FT 'their incorrectly evaluated 10×1.8 '
2. Alternative method (Additional rainfall per day)$\quad$$(4-1.8) \div 11$ $(=)$(Mean rainfall for $1^{\text {st }}$11 days of April) $(1.8+0.2=)$ (cm)	M1 A1 B1	FT 'their incorrectly evaluated (4-1.8) $\div 11$ '
Organisation and communication Writing	$\mathrm{OC} 1$ W1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

3. Partial method, to find the cost of 200 g of apples, e.g. 30 p for $100 \mathrm{~g}, 3 \mathrm{p}$ for $10 \mathrm{~g}, 3 \div 5,3 / 5,300 \div 5$, $3(00) \times 200 \div 1000$ (Cost of 200 g of apples) 60 (p) or ($£$) 0.60 (Change is) (£)9.40 or 940 (p)	M1 A1 A1	Must engage with $1 \mathrm{~kg}=1000 \mathrm{~g}$ conversion and the cost If units are given they must be correct CAO. Allow £9.40p
4(a) $130 \leq$ energy < 140	B1	Accept unambiguous indication, e.g. 130-140 Allow e.g.' 130,140 ', ' 130 140' Do not accept the values 130, 140, 18 or a choice between the group and the frequency
4(b) Total of 37 (energy bars) $\frac{1+4+12}{37}$ $\frac{17}{37}$	B1 M1 A1	FT 'their 37 ' provided > 'their $1+4+12^{\prime}$ Also allow one error in misreading 1 frequency, which impacts consistently on 'their denominator' and possibly 'their numerator' Only FT 'their 37 ' provided - 'their 37 ' is 36 or 38 or 39 or - 'their 37 ' is clearly from an addition error in calculating $1+4+12+18+2$ ISW for incorrectly simplifying their fraction
4(c) $(100 \times) \stackrel{2}{2}$ or $(100 \times) 1-(100 \times) \frac{18}{18+2}$ $18+2$ $10(\%)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT any repeated misread of the scale from (b) Award 2 marks for an answer of $10(\%)$ unless from incorrect working

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
5(a) \(100 \times 720 \div 360\) or \(260 \times 720 \div 360\) or for sight of \(1^{\circ}\) is 2 bags \\
200 (large bags sold) and 520 (small bags sold) \\
(Total sales) \(200 \times(£) 1() 80+.520 \times 80(p)\)
\[
(=£ 360+£ 416)
\] \\
(£) 776
\end{tabular} \& M1
A2
M1

A2 \& | A1 for 200 (large bags) or 520 (small bags) or for 'their number of large bags' |
| :--- |
| + 'their number of small bags' $=720$ |
| Ignore incorrect units stated, mark intention |
| Or equivalents all in p or all in $£$ |
| Accept equivalent $720 \times 80 p+200 \times(£) 1$ |
| FT for 'their 200 large bags' $\times(£) 1.80$ and 'their 520 small bags' $\times 80$ p, |
| provided 'their 200 ' ≥ 50 and 'their 520 ' ≥ 130, |
| 'their 520' \neq 'their 200' and both are whole numbers |
| CAO |
| A1 for either |
| - a correctly evaluated sum with one correct evaluation of a product or |
| - on FT for the correct evaluation of |
| 'their smaller value' $\times(£) 1.80+$ 'their larger value' $\times 80 \mathrm{p}$ |
| For example $100 \times(£) 1.80+260 \times 80 p=£ 388$ is awarded M0 A0 M1 A1 |
| If initial M1, A2 awarded also award SC1 for one of the following seen: |
| - $200 \times 80(\mathrm{p})+520 \times(£) 1.80=(£) 1096$ |
| - $£ 360$ and $£ 416$ (no method mark as not added) |
| If no marks, award SC1 for sight of $260\left({ }^{\circ}\right)$ |

\hline | 5(b) Method to compare, e.g. |
| :--- |
| - (Small bag per kg) 2.5×80 or $80 \times 1000 \div 400$ |
| - (Per 100 g) small $80 \mathrm{p} \div 4$ and large $£ 1.80 \div 10$ |
| - (g per penny) $400 \div 80$ and $1000 \div 180$ |
| - (Per 200 g$) 80 \mathrm{p} \div 2$ and $£ 1.80 \div 5$ |
| - (Per 2000g) $5 \times 80 \mathrm{p}$ and $2 \times £ 1.80$ |
| - (Large bag per 400 g) $£ 1.80 \times 0.4$ |
| Accurate comparison calculation, e.g. |
| - (Small bag per kg) £2 |
| - (Per 100 g) small 20p and large18p |
| - (g per penny) small 5 g and large $5.5(5 \ldots$...) or 5.6 g |
| - (Per 200 g) small 40p and large 36p |
| - (Per 2000 g) small $£ 4$ and large $£ 3.60$ |
| - (Large bag per 400g) 72p |
| AND |
| Conclusion, Large bag (better value) | \& M1 \& | Needs to show comparing like quantity with like |
| :--- |
| If units are given they must be correct |

\hline 6. $\begin{array}{ll}(\mathrm{a}=) & 32\left({ }^{\circ}\right) \\ (\mathrm{b}=) & 148\left({ }^{\circ}\right) \\ (\mathrm{c}=) & 122\left({ }^{\circ}\right)\end{array}$ \& $$
\begin{aligned}
& \mathrm{B} 1 \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \& FT 180 - 'their a' provided a $\neq 90$ FT $90+$ 'their a' provided a $\neq 90$ or 270 - 'their b' provided b $\quad \neq 90$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 7(a) 18 (g) \& B1 \& \\
\hline 7(b) 15-12.5 or \(5 \times 0.5 \quad 2.5\) (cm) \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \\
\hline \begin{tabular}{l}
7(c) Sight of 20 (cm) \\
(Wingspan in inches is) \(12 \times 20 \div 30\) \\
8 (inches)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& Allow \(20 \div 2.5\) or \(20 \times 0.4\) or equivalent CAO \\
\hline 7(d) Positive (correlation) \& B1 \& Do not accept a description \\
\hline 7(e) An answer in the inclusive range \(18.5(\mathrm{~cm})\) to \(22.5(\mathrm{~cm})\) \& B1 \& \\
\hline \[
\begin{aligned}
\& 8 \text { (a) } 420-420 \times 35 \div 100 \\
\& \text { or }(100-35) \times 420 \div 100 \\
\& \text { or equivalent } \\
\& \\
\& \\
\&
\end{aligned}
\] \& \begin{tabular}{l}
M2 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for any one of \\
- \(420 \times 35 \div 100\) \\
- sight of \(42+42+42+1 / 2\) of 42 \\
- sight of 147
\end{tabular} \\
\hline \begin{tabular}{l}
\[
8 \text { (b) } 420 \div 20 \times 17
\] \\
357 (people)
\end{tabular} \& \begin{tabular}{l}
M2 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for any of the following: \\
- \(420 \div 20(=21)\) \\
- sight of 21 \\
CAO. Allow embedded as 420 : 357 Award A0 for 357 : 420
\end{tabular} \\
\hline 8(b) Alternative method 1
\[
(420 \div 20) \times(20+17)-420 \quad(=777-420)
\]
\[
357 \text { (people) }
\] \& \begin{tabular}{l}
M2 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for any of the following: \\
- \(420 \div 20(=21)\) \\
- sight of 21 \\
- sight of 777 \\
CAO. Allow embedded as 420 : 357 Award AO for 357 : 420
\end{tabular} \\
\hline \begin{tabular}{l}
8(b) Alternative method 2 \\
\(420-(20-17) \times(420 \div 20)\)
\[
(=420-63)
\] \\
357 (people)
\end{tabular} \& \begin{tabular}{l}
M2 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for any of the following: \\
- \(420 \div 20(=21)\) \\
- sight of 21 \\
- sight of 63 \\
CAO. Allow embedded as 420 : 357 Award AO for 357: 420
\end{tabular} \\
\hline \begin{tabular}{l}
8(b) Alternative method 3 \\
Full ratio method to find 357 people, e.g.
\[
\left(20 \times \frac{420}{(20)}: 17 \times \frac{420}{20}\right.
\]
\[
357 \text { (people) }
\]
\end{tabular} \& M2

A1 \& | Allow seen in stages, including written as an appropriate sum of equivalent ratios, e.g. attempting $17+340$ (from $20: 17$ and $400: 340$) |
| :--- |
| M1 for any of the following: |
| - $420 \div 20(=21)$ |
| - sight of 21 |
| CAO. Allow embedded as 420 : 357 |
| Award AO for 357 : 420 |

\hline
\end{tabular}

9(a) Lowest common multiple of $2 \times 3 \times 5 \times 5$ or 150 seen or implied, e.g. listing multiples to 150 for nuts and washers and sight of 30 boxes of bolts, sight of $5 \times 30=150,6 \times 25=150$ and sight of 30 boxes of bolts,			M2	M1 for a method looking at factors or multiples, e.g. - sight of $2 \times 3 \times 5$ and 5×5 - sight of 6×5 and 5×5 - 30 with factors 5,6 and 25 with factors 5, 5 - listing $30,60,90$ and $25,50,75$ - a common multiple of 150 (not the lowest) seen or implied, e.g. $300,450,600, \ldots$
Table completed correctly, or sight of correct number of boxes in working, e.g.			A1	Answers in the table take precedence, e.g. if correct number of boxes 5 for nuts, 30 for bolts and 6 for washers in working but table incorrect, award M2 A0 If no marks, award SC1 for an answer with whole numbers of nuts, bolts and washers in the ratio $5: 30: 6$, e.g. answers of 10,60 and 12 respectively
	Nuts	5 boxes		
	Bolts	30 boxes		
	Washers	6 boxes		
9(b) $13.5(0 \mathrm{~mm})$			B2	B1 for sight of any one of: - $6 \times(2+0.25)$ - $6 \times 2+6 \times 0.25$ - sight of $2.25(\mathrm{~mm})$ - correct evaluation of ' $6 \times(2+$ their 0.25$)$ ' provided $0<$ 'their 0.25 ' ≤ 0.5

10. 5.1×10^{8}	B2	Allow 5.10(00....) $\times 10^{8}$ B1 for the correct value written in index form, e.g. $51 \times 10^{7} \text { or } 510 \times 10^{6}$ or B1 for the sight of either of the following - 51000000 and 5.1×10^{7} - 5100000000 and 5.1×10^{9} - 5×10^{8}
11(a) Suitable uniform scales on both axes, costs to £110 and number of bottles from 0 to 100	B1	Allow for cost axis - starting from $£ 10$ - final label is $£ 100$ (rather than $£ 110$ or $£ 120$) - suitable for 'their plotted points' with increasing costs for increasing number of bottles
Correct representation of costs for 0 to 100 bottles	B2	With no incorrect points plotted Joined with dotted or solid straight line Ignore any additional 'correct' points plotted for more than 100 bottles Examples of points: B1 for any one of: - One incorrect plot, that is not $(0,10)$, on an otherwise correct graph. $(0,10)$ must be plotted and joined - correct graph for an inclusive range of 50 bottles - at least 2 correct points plotted, with no incorrect points plotted, ignore vertical lines or 'line of best fit'. Allow for points not joined Note: the drawing of a bar chart should only be awarded B1 maximum for the uniform scales
11(b) $1750 \div 1.75$ or $1750 \times 4 / 7$ or $1750 \div 7 / 4$ $£_{1010}+10$	M1 m1 A1	Allow sight of 1000 provided not from incorrect working (not for 1 litre $=1000 \mathrm{ml}$) If no marks, award SC1 for sight of ' $\div 1.75$ ' or ' $\div 7 / 4$ ' or ' $\times 4 / 7$ ' or equivalent
12. (Width of small sticker is) $42 \div 14$ $\begin{array}{ccc} & & 3(\mathrm{~cm}) \\ \text { (Length or width of large sticker) } & 4 \times 14 \begin{array}{c}\text { OR } \\ 4 \times 3 \\ 56(\mathrm{~cm})\end{array} & \text { AND } \\ 12(\mathrm{~cm})\end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Must be for the small label (check the diagram) FT 'their $42 \div 14$ ' (Note: Incorrect logic $42 \times 4=168$ with $168 \div 56=3$ does not give the width of the small label! MO A0)
12. Alternative method: (Area of large sticker) (Length of large sticker) $\begin{array}{cl} 42 \times 4^{2} & \left(=672 \mathrm{~cm}^{2}\right) \\ 14 \times 4 & (=56 \mathrm{~cm}) \end{array}$ (Width of large sticker) $\frac{42 \times 4^{2}}{14 \times 4} \text { or } \frac{672}{56}$ (Length and width of large sticker) 56 (cm) AND 12 (cm)	M1 M1 M1 A1	

13(a)(i) Answer in the range 46 to 48 (cm)			B1	
13(a)(ii) 5 (ray fish)			B1	
13(b)(i) Correct format of a box-and-whisker with at least one of minimum, LQ, median, UQ or maximum correct			B1	Do not ignore additional lines drawn Do not accept minimum of 0 cm or maximum of 7 cm End vertical stopper lines omitted can be ignored
Showing:			B1	Must all be shown on the diagram/graph
Minimum	LQ	Median		Do not accept plotted points for LQ and median, must
1.6 (cm)	2.4 (cm)	3.2 (cm)		be intention to draw lines
UQ at 5.8 (cm) Maximum at 6.8 (cm)				Must be intention of the minimum, LQ and median, for the median ignore 1 spurious line also drawn
			B1	Must be shown on the diagram/graph
				Must be shown on the diagram/graph If no marks for both UQ and maximum, allow SC1 for sight of $U Q$ as $5.8(\mathrm{~cm})$ or maximum $6.8(\mathrm{~cm})$ in working
13 (b)(ii) 0.75×60 or equivalent45 (guppies)			M1	
			A1	If no marks, award SC1 for an answer of 15 (guppies) or for sight of 75% or $3 / 4$
13 (c) $100 \times 9.9 \div(100+10)$ or $9.9 \div 1.1$ or equivalent			M1	Allow 9.9-0.9 provided 0.9 is not from incorrect working
		9 (kg)	A1	CAO. Must be from a correct method
				Allow unsupported 9 (kg) for M1, A1

