GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS - NUMERACY
UNIT 2 - HIGHER TIER
3310U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

SUMMER 2022 MARKING SCHEME

\begin{tabular}{|c|c|c|}
\hline Unit 2: Higher Tier \& Mark \& Comments \\
\hline 1(a)(i)
\[
100 \leq x<150
\] \& B1 \& \\
\hline \& \begin{tabular}{l}
B1 \\
M1 \\
m1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Check the table \\
FT 'their midpoints' provided at least 4 lie within the appropriate group, including bounds throughout
\end{tabular} \\
\hline \begin{tabular}{l}
1(b) \\
(Number of miles next month is) \(440 \times 1.12\) \\
(Increased cost of fuel is) \(\quad 1.3(0) \times 1.1(0)\) \\
(Number of miles next month is) \\
492.8 (miles) \\
AND \\
(Increased cost per litre of fuel is) \\
(£) 1.43 \\
(Cost of fuel next month is)
\[
\frac{440 \times 1.12}{11} \times 1.3(0) \times 1.1(0) \text { or } \frac{492.8}{11} \times 1.43
\] \\
(£) 64.06(4)
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Or equivalent, e.g. \(440+440 \times 12 \div 100\)
\[
(=440+52.80=492.80)
\] \\
Penalise, A0, if prematurely approximated in further working, but FT for possible final A1 Penalise any premature approximation in the \(1^{\text {st }} \mathrm{A} 0\) \\
FT provided M1, M1 previously awarded \\
ISW. Allow an answer of (£)64.1(0) or (£)65 Allow correctly evaluated answers from correct working which may include premature rounding or truncation, e.g. (£)64 to (£)64.10, (£)64.35
\end{tabular} \\
\hline \begin{tabular}{l}
1(b) Alternative method 1 \\
(Cost of fuel last month) 1.3(0) \(\times 440 \div 11\) \\
or \(1.3(0) \times 40\) \\
(£) 52 \\
(Cost of fuel next month) \(52 \times 1.1(0) \times 1.12\) \\
(£) 64.06(4)
\end{tabular} \& M1
A1
m2

A1 \& | May be implied in further working |
| :--- |
| Penalise, A0, if prematurely approximated in further working, but FT for possible final A1 |
| FT 'their $1.3(0) \times 440 \div 11^{\prime}$ |
| m1 for one of the following: |
| - $52 \times 1.1(0) \quad(=57.20)$ |
| - $52 \times 1.12 \quad(=58.24)$ |
| ISW. Allow an answer of (£)64.1(0) or (£)65 |
| FT only m2, no FT from m1. |
| Allow correctly evaluated answers from correct working which may include premature rounding or truncation, e.g. (£)63.84, (£)64.02 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
1(b) Alternative method 2 \\
(Fuel next month) \(1.12 \times 440 \div 11\) \\
or \(1.12 \times 40\) \\
44.8 (litres) \\
(Cost of fuel next month) \(44.8 \times 1.3(0) \times 1.1(0)\) \\
(£) 64.06(4)
\end{tabular} \& M1
A1
m2

A1 \& | May be implied in further working |
| :--- |
| Penalise, A0, if prematurely approximated in further working, but FT for possible final A1 |
| FT 'their $1.12 \times 440 \div 11$ ' |
| $m 1$ for one of the following: |
| - $44.8 \times 1.3(0) \quad(=58.24)$ |
| - $44.8 \times 1.1(0) \quad(=49.28)$ |
| ISW. Allow an answer of (£)64.1(0) or (£)65 |
| FT only m2, no FT from m1. |
| Allow correctly evaluated answers from correct working which may include premature rounding or truncation, e.g. (£)63.84, (£)64.02 |

\hline | 1(b) Alternative method 3 (Cost of fuel next month) $\frac{440 \times 1.12}{11} \times 1.3(0) \times 1.1(0)$ |
| :--- |
| (£) 64.06(4) | \& | M4 |
| :--- |
| A1 | \& | Must be shown as one complete calculation to be followed by a final answer |
| :--- |
| ISW. Allow an answer of (£)64.1(0) or (£)65 |

\hline 2(a) $\frac{114}{1.45}$ or $114 \div(87 / 60)$ or $114 \times \frac{60}{87}$ or equivalent

\[
78.6(2 ···)(\mathrm{km} / \mathrm{h})

\] \& M2 \& | M1 for one of the following: |
| :--- |
| - idea of distance/time, e.g. 114/1.27, 114/87, $114 / 5220,114 / 1 \mathrm{hr} 27$ minutes, including approximated as $114 / 1.5$, may be implied by answers to these calculations (see note) provided not from incorrect working |
| - sight of 1.45 (hours) |
| Accept $79(\mathrm{~km} / \mathrm{h})$ provided not from incorrect working Do not FT from M1 |

\hline | 2(b) (Conversion to Japanese yen) 800×135.72 |
| :--- |
| 108576 (Japanese yen) |
| (Can buy) | \& | M1 |
| :--- |
| A1 |
| B1 | \& Allow for an equivalent amount given using the notes available, e.g. 215000 (yen) and 31000 (yen), or equivalent using only 5000 and 1000 yen notes FT 'their derived 108576' provided evidence of rounding down to nearest 1000

\hline | (Cost in pounds is) $\quad 108000 \div 135.72$ or $(800-) 576 \div 135.72$ |
| :--- |
| (£) 795.76 | \& M1

A1 \& | FT 'their derived 108576' and 'their derived 108000' provided 'their 108000' in whole number of 1000s (including from rounding 108576 up) |
| :--- |
| ISW. Allow (£)795.75 |
| Allow on FT rounded or truncated to a penny |

\hline
\end{tabular}

2(c) (Number of 0-to-64-year olds) 0.75×270400 or $270400-0.25 \times 270400$ 202800	M1	
	A1	May be implied in further working
(Number of 0-to-14-year olds) $9 \times 202800 \div(9+41)$ or 9×4056	M1	FT 'their derived 202800', not 270400
36504	A1	
$\begin{aligned} & \text { 2(c) Alternative method } 1 \\ & \text { (Proportion) } \quad 9 \times 270400 \div(9+41) \end{aligned}$	A1	May be implied in further working
(Number of 0-to 14-year olds) 0.75×48672 or $48672-0.25 \times 48672$	M1	FT 'their derived 48672', not 270400
36504	A1	
2(c) Alternative method $2^{\text {a }}$ (Overall ratio) ($9: 41$) $\underline{9+41} \quad$ M1		
$\text { (} 9: 41 \text { (: 16.66666... }$	A1	Allow 16.6(...) or 16.7
		May be implied in further working
(Number of 0-to 14-year olds)	M1	FT 'their $1 / 3(9+41)^{\prime}$
36504	A1	Do not FT from rounding or truncation of 50/3

$\sin x=30 / 110$

$$
\sin y=60 / 110
$$

$(x=) \sin ^{-1}(30 / 110)$ or $(x=) \sin ^{-1} 0.2727 \ldots$
OR

$$
(y=) \sin ^{-1}(60 / 110) \text { or }(y=) \sin ^{-1} 0.5454 \ldots
$$

15.8266... $\left(^{\circ}\right.$) AND 33.0557.... $\left(^{\circ}\right.$)
(and statement or calculation to show

$$
\left.33.0557 \ldots .\left(^{\circ}\right)>2 \times 15.8266 \ldots\left({ }^{\circ}\right)\right)
$$

3. Alternative method 1
(To find initial angle of lean)
$\operatorname{Sin} x=30 / 110$
$(x=) \sin ^{-1}(30 / 110)$ or $(x=) \sin ^{-1} 0.2727 \ldots$ $(x=) 15.8266 \ldots\left({ }^{\circ}\right)$
(To find horizontal lean if angle of lean was doubled) $\sin \left(\left(2 \times 15.8266 \ldots\left(^{\circ}\right)\right)=\right.$ horizontal lean/110 or (Horizontal lean =) $110 \times \operatorname{Sin}\left(2 \times 15.8266 \ldots\left({ }^{\circ}\right)\right)$
$57.725(\mathrm{~cm})$ (and statement that $<60 \mathrm{~cm}$)
4. Alternative method 2
(To find final angle of lean)
$\operatorname{Sin} y=60 / 110$
$(y=) \sin ^{-1}(60 / 110)$ or $(y=) \sin ^{-1} 0.5454 \ldots$
(To find horizontal lean if angle of lean was halved) $\sin \left(1 / 2 \times 33.0557 \ldots\left(^{\circ}\right)\right)=$ horizontal lean/110 or
(Horizontal lean =) $110 \times \operatorname{Sin}\left(1 / 2 \times 33.0557 \ldots\left({ }^{\circ}\right)\right)$
$31.29 \ldots(\mathrm{~cm})$ (and statement that $>30 \mathrm{~cm}$)
Organisation and communication

Writing

M1 Allow M marks for

- same variable is used for both angles of lean
- an appropriate statement of the sine rule, e.g.
$30 / \sin x=110 / \sin 90$ or $\sin y / 60=\sin 90 / 110$
M1 Also implies appropriate previous M1

A2 Accept rounded or truncated angles for A2 or A1
A1 for 15.8266... $\left(^{\circ}\right.$) or $\left.33.0557 \ldots . .{ }^{\circ}{ }^{\circ}\right)$

M1 Allow for an appropriate statement of the sine rule, $30 / \sin x=110 / \sin 90$ or $\sin x / 30=\sin 90 / 110$

M1 Also implies previous M1
A1 Accept rounded or truncated angles
M1 FT rounded or truncated double 'their derived 15.8266...(${ }^{\circ}$)'

A1 FT answer must be <60 (cm)

M1 Allow for an appropriate statement of the sine rule,
$60 / \sin y=110 / \sin 90$ or $\sin y / 60=\sin 90 / 110$
M1 Also implies previous M1
A1 Accept rounded or truncated angles
M1 FT rounded or truncated $1 / 2$ 'their derived $33.0557 \ldots\left({ }^{\circ}\right)$

A1 FT answer must be > 30 (cm)
For OC1, candidates will be expected to:

- present their response in a structured way
- explain to the reader what they are doing at each
step of their response
- lay out their explanations and working in a way that
is clear and logical
- write a conclusion that draws together their results and explains what their answer means
For W1, candidates will be expected to:
- show all their working
- make few, if any, errors in spelling, punctuation and grammar
- use correct mathematical form in their working
- use appropriate terminology, units, etc.

4. $\left(80\right.$ litres $\left.=80000 \mathrm{~cm}^{3}\right)$ $80000=\pi \times 36^{2} \times$ height or equivalent $($ Height $=) \frac{80000}{\pi \times 36^{2}} \quad$ or equivalent Answers in the range 19.6 to 19.7 (cm)	M2	May be shown in stages, but place value must be correct for the award of M2 M1 for sight of any 1 of the following: - $(80$ litres $=) 80000\left(\mathrm{~cm}^{3}\right)$ - $\pi \times 36^{2}$ (\times height) - sight of $\pi \times 36^{2}(\approx 4069$ to 4072$)$ - sight of $\left(\pi \times 36^{2} \approx\right) 4069$ to 4072 - $80000=\pi \times 36^{2} \times$ height with place value errors with digits 8 and/or 36 Allow for sight of $\pi \times 36^{2}$ or $80000\left(\mathrm{~cm}^{3}\right)$ even if embedded, contradicted in further working or not used For a correct rearrangement, provided the denominator is a multiple of π Allow if the intended calculation includes a place value error with digits 8 and/or 36 Also possible FT from M1 CAO, must be in centimetres Accept 20(cm) from correct working
5. (Income taxed at Basic rate) $2400 \times 100 \div 20$ or $2400 \div 0.2$ or 2400×5 or equivalent	M1	May be seen in stages Allow for sight of, e.g. - 10% of 12000 - $12000 \times 0.8=9600$
12000 (dollars)	A1	Allow an embedded answer e.g. $12000 \times 0.2=2400$ Accept if found by trial and improvement or reverse working for M1 A1, e.g. - 10% of $12000=1200$ with an answer 12000 - $12000 \times 0.8=9600$ with an embedded answer $12000-9600=2400$ Allow M1 A1 for a final answer of 12000, provided not from incorrect working.
(Khalida's income) 12000 + 5000	M1	FT their derived 12000 ' provided 2400 < 'their 12000' < 20000, i.e. 'their income taxed at Basic rate' +5000
17000 (dollars)	A1	Mark final answer. The answer given in the answer space takes precedence.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
6.
\[
\begin{gathered}
\frac{5750}{97.5-20} \text { or } \frac{5750}{77.5} \\
-\frac{97.5}{97.5-20} \text { or }-\frac{97.5}{77.5} \\
\left(\text { May be seen as } \begin{array}{r}
\left.\frac{5750-97.5}{97.5-20} \text { or } \frac{5652.5}{77.5}\right) \\
=72.9(3 \ldots) \text { or } 73
\end{array}\right.
\end{gathered}
\] \\
(Number of boards needed =) 74 (boards)
\end{tabular} \& M3
m1

A1

A1 \& | M marks may be awarded from working with multiples of e.g. 77.5 and/or 97.5 to reach e.g. 5750 |
| :--- |
| M2 for length, where 5700 < length ≤ 5800 and width - $20 \quad 95 \leq$ width <100 |
| M1 for $\frac{5750}{97.5}$ |
| FT from M2 for 'their 97.5' |
| FT is possible from m0 provided M3 or M2 previously awarded |
| From M3, $5750 \div 77.5=74.19$ (3 \ldots) rounded down to 74 (boards) is awarded M3m0A1 unless further correct working seen |
| FT from M2m1A1 for a correct evaluation using their bounds, rounded up and +1 |
| If no marks awarded, and from a misinterpretation of the question, |
| SC4 for an answer of 69 boards from $\frac{5650}{102.5-20}-\frac{102.5}{102.5-20}+1 \text { or } \frac{5547.5}{82.5}+1 \text { OR }$ |
| SC3 for an answer of 67(.242...) or 68 from $\frac{5650}{102.5-20}-\frac{102.5}{102.5-20} \text { or } \frac{5547.5}{82.5} \quad \text { OR }$ |
| SC2 for a correct evaluation (rounded, truncated or unrounded) of the calculation |
| length - width, where $5600 \leq$ length <5700 and $\text { width }-20$ $100<\text { width } \leq 105$ |
| SC1 for an answer of 68(.484...) or 69 boards from $\frac{5650}{102.5-20} \text { or } \frac{5650}{82.5}$ |
| OR |
| If no marks awarded, |
| SC1 for sight of 97.5 and 5750 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 6. Alternative method:
$$
\begin{aligned}
& \qquad \frac{5750}{97.5-20} \text { or } \frac{5750}{77.5} \\
& -\frac{20}{97.5-20} \text { or }-\frac{20}{77.5} \\
& \left(\text { May be seen as } \frac{5750-20}{97.5-20} \text { or } \frac{5730}{77.5}\right. \text {) } \\
& \text { (Number of boards needed }=\text {) } 74 \text { (boards) }
\end{aligned}
$$ \& M3
m1

A2 \& | M marks may be awarded from working with |
| :--- |
| multiples of e.g. 77.5 and/or 97.5 to reach e.g. 5750 |
| M2 for length, where 5700 < length ≤ 5800 and $\text { width }-20 \quad 95 \leq \text { width }<100$ |
| M1 for $\frac{5750}{97.5}$ |
| FT from M2 for 'their 97.5' |
| FT from M2m1 for a correct evaluation using their bounds, rounded up |
| A1 for 73(.9354...) |
| A1 on FT from M3m0 for 74.19(3...) or 75 |
| An answer of 74.19(3...) rounded down to 74 (boards) is awarded M3m0A1 unless further correct working seen |
| A1 on FT from M2m1 for an unrounded correct evaluation using their bounds |
| If no marks awarded, and from a misinterpretation of the question |
| SC4 for an answer of 69 boards from $102.5-20-\frac{5650}{102.5-20} \text { or } \frac{5630}{82.5}$ |
| SC3 for an answer of 68(.2424...) boards from $102.5-20-\frac{5650}{102.5}-20 \text { or } \frac{5630}{82.5}$ |
| SC2 for a correct evaluation (rounded, truncated or unrounded) of the calculation |
| length - 20, where $5600 \leq$ length <5700 and $\text { width - } 20$ $100<\text { width } \leq 105$ |
| SC1 for an answer of 68(.484...) or 69 boards from $\frac{5650}{102.5-20} \text { or } \frac{5650}{82.5}$ |
| OR |
| If no marks awarded, |
| SC1 for sight of 97.5 AND 5750 |

\hline
\end{tabular}

7. Strategy of using trigonometry to find DB (or DC) followed by Pythagoras to find $A B$ (or AC)	S1	Or equivalent full method
$\begin{array}{rl} (\mathrm{DB}=) \\ \underset{\cos 65}{3.5} & \mathrm{OR} \quad(\mathrm{DB}=) \frac{7 \times \sin 65}{\sin 50} \end{array}$	M2	Or a complete method to find DB using the vertical height of the triangle and Pythagoras M1 for $\cos 65=\frac{3.5}{D B} \quad$ OR $\quad \frac{\mathrm{DB}}{\sin 65}=\frac{7}{\sin 50} \quad$ or equivalent
$=8.28(1 \ldots)$ or 8.3 (cm)	A1	CAO Award A0 but FT if e.g. 8 or 8.2 used in next step
$\left(A B^{2}=\right) 13^{2}+8.28(1 \ldots)^{2}$	M1	FT 'their 8.28(1...)' provided trigonometry attempted to find DB
$\begin{aligned} & \mathrm{AB}^{2}=237.58(6 \ldots) \text { or } 237.6 \quad \mathrm{OR} \\ & (\mathrm{AB}=) \sqrt{237.58(6 \ldots)} \text { or } \sqrt{237.6} \text { or } 15.4(138 \ldots)(\mathrm{cm}) \end{aligned}$	A1	FT for similar accuracy Note: use of $D B=8.2$ leads to $A B^{2}=236.24 \quad O R \quad A B=\sqrt{236.24}$ or $15.37(01 \ldots)$ use of $D B=8.3$ leads to $A B^{2}=237.89 \quad O R \quad A B=\sqrt{237.89}$ or $15.4(236 \ldots)$
(Length of tear strip needed =) $37.8(2 \ldots)$ or 37.83 or $38(\mathrm{~cm})$	B1	FT the correct evaluation of 'their $\sqrt{237.58(6 \ldots)} \times 2+7$ provided previous M1 awarded Note: use of $\mathrm{DB}=8.2$ leads to an answer of $37.7(40 \ldots \mathrm{~cm})$ use of $D B=8.3$ leads to an answer of $37.8(47 \ldots \mathrm{~cm})$
7. Alternative method: Strategy of using trigonometry to find the vertical height of the triangle followed by 3-D Pythagoras	S1	Or equivalent full method
$(h=) 3.5 \times \tan 65 \quad O R \quad(h=) \frac{3.5 \times \sin 65}{\sin 25}$	M2	$\text { M1 for } \tan 65=\frac{h}{3.5} \text { OR } \frac{h}{\sin 65}=\frac{3.5}{\sin 25} \text { or equivalent }$
$=7.5(057 \ldots$... (cm)	A1	CAO Award AO but FT if e.g. 7 or 8 used in next step
$\left(A B^{2}=\right) 7.5(057 \ldots)^{2}+3.5^{2}+13^{2}$	M1	FT 'their 7.5(057...)' provided trigonometry attempted to find h
$\begin{aligned} & A B^{2}=237.58(6 \ldots) \text { or } 237.6 \quad O R \\ & (A B=) \sqrt{237.58(6 \ldots)} \text { or } \sqrt{237.6} \text { or } 15.4(138 \ldots)(\mathrm{cm}) \end{aligned}$	A1	FT for similar accuracy
```(Length of tear strip needed =) 37.8(2...) or 37.83 or 38 (cm)```	B1	FT the correct evaluation of 'their $\sqrt{237.58(6 \ldots)} \times 2+7$ provided previous M1 awarded


8. $\begin{aligned} & (£) 850 \times 1.0048^{n} \\ & 850 \times 1.0048^{34}(=(£) 1000 .(29 \ldots) \quad \text { OR } \\ & 1.0048^{34}(=1.1768 \ldots) \end{aligned}$   34 (months) OR 2 years 10 months   (Date =) 31st October or 1st November 2024	B1   M1   A1   A1	e.g. $850 \times 1.0048=(£) 854.08$   CAO   May be implied by $\left(850 \times 1.0048^{34}=\right)(£) 1000 .(29 \ldots)$   Allow 30th October   A correct answer of 31st October or 1st November   2024 implies the previous A1   If no marks awarded, SC1 for a date of 31st March or 1st April 2050 from using a multiplier of 1.00048
9(a)   Sight of $\sqrt{2.25}$ OR Area scale factor $=1.5^{2}$ OR Area scale factor $=2.25$ AND scale factor $=1.5$ $\begin{aligned} (\text { Height }=) 12 \div \sqrt{2.25} \text { or } 12 \div 1.5 & \text { or } 12 \times 2 / 3 \\ & =8(\mathrm{~cm}) \end{aligned}$	M1   m1   A1	Must be from convincing working
$\begin{aligned} & \text { 9(b) (Base area of large can =) } \\ & \begin{array}{r} 144 \div 8 \times 2.25 \end{array} \text { or } \\ & \\ & \\ & \end{aligned}$	M1   A1	Note: 2.25 could be written as $1.5^{2}$
$\begin{aligned} & \frac{\text { 9(b) Alternative method 1: }}{\text { (Base area of large can =) }} \\ & \begin{array}{rr} 144 \times \sqrt{2.25}^{3} \div 12 \text { or } & 144 \times 1.5^{3} \div 12 \\ & =40.5\left(\mathrm{~cm}^{2}\right) \end{array} \end{aligned}$	M1 A1	
$\begin{aligned} & \frac{9(b) \text { Alternative method 2: }}{\text { (Radius of large can }=)} \\ & \sqrt{\sqrt{\frac{144}{8 \times \pi}} \times \sqrt{2.25} \text { or } \sqrt{\frac{18}{\pi}} \times 1.5 \quad(=3.59 \text { to 3.592) }} \begin{array}{ll}  \\ \quad \text { (Base area of large can }=) & 40.5\left(\mathrm{~cm}^{2}\right) \end{array} \end{aligned}$	M1   A1	From $\pi \times\left(\sqrt{\frac{18}{\pi}} \times 1.5\right)^{2}$
10(a) Sight of $(2 \times) \underline{x} \times 2 \times \pi \times 160$ or equivalent 360 $(x=) \frac{65 \div 2 \times 360}{2 \times \pi \times 160}$ or equivalent $=11.6\left({ }^{\circ}\right)$	B1   M1   A2	Allow for sight of $65 \times 360$ or equivalent $2 \times \pi \times 160$   CAO   A1 for 11.6366... to $11.6441 \ldots$ or $585 / 16 \pi$ OR   A1 for a final answer of 23.3( ${ }^{\circ}$ ) from failing to halve their sector angle   If no marks awarded, SC1 for a final answer of 23.3(으) from use of diameter 160 cm and halving their sector angle



10(b) Alternative method 2:		
Strategy to form a quadratic equation and solve	S1	
$148^{2}=160^{2}+$ shot $^{2}-2 \times 160 \times$ shot $\times \cos 32$	M1	
Shot ${ }^{2}-320 \cos 32 \times$ shot $+3696=0$	A1	Note: $320 \cos 32=271.375 .$.
$(\text { Shot }=) \frac{271.375 \ldots \pm \sqrt{271.375^{2}-4 \times 1 \times 3696}}{2 \times 1}$	M1	FT 'their 320cos32' Must be seen
$(\text { Shot }=) \frac{271.375 \ldots \pm \sqrt{58860.60272}}{2}$	A1	
$($ Shot $=$ ) 256.99 $\ldots$ or 257 (m) ( or 14.38... (m))	A2	Implies previous A1   A1 if 256.99... clearly not identified as being their answer

