Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3300U30-1

TUESDAY, 24 MAY 2022 - MORNING

MATHEMATICS UNIT 1: NON-CALCULATOR INTERMEDIATE TIER

1 hour 35 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the additional page at the back of the booklet. Question numbers must be given for all work written on the additional page.

Take π as 3·14.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

In question **8**, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

For Ex	For Examiner's use only		
Question	Maximum Mark	Mark Awarded	
1.	4		
2.	3		
3.	4		
4.	3		
5.	4		
6.	3		
7.	5		
8.	6		
9.	3		
10.	4		
11.	5		
12.	6		
13.	2		
14.	6		
15.	4		
16.	4		
17.	2		
18.	2		
Total	70		

Formula List - Intermediate Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = area of cross-section × length

3300U301 03

(a) 3 ²	×2 ³	
(b) -12	<u>?</u> 4 ÷ 4	
(c) 15	5% of 280	
	$\frac{8}{25}$ and 31% in ascending order. It show all your working.	

	E
220°	
	Diagram not drawn to scale
Calculate the size of angle x . You must show all your working.	[4]
x =°	

,	_	
	0	
1	3	
- 3	\supset	
	0	
	0	
-	3	5

4.	Glyn The s	n is 9 years older than Glyn. is twice as old as Sheila. sum of the three ages is 49 years. old are Imran, Glyn and Sheila?	[3]
	Imrar	n =years old. Glyn =years old. Sheila =	years old.
5.	(a)	Find a whole number value of n , so that $7n-9$ is a multiple of 4. You must show all your working.	[2]
		7. 0: 1: 1. 64	
	(b)	When $n = 1, 7n - 9$ is a multiple of 4. Find a whole number value of n , so that $3n - 5$ is a prime number. You must show all your working.	[2]
		When $n = \dots, 3n-5$ is a prime number.	

6.	(a)	A bag contains red balls, green balls and yellow balls. The number of green balls is equal to the number of yellow balls.	
		Mali picks one ball from the bag at random. The probability that she will pick a red ball is 0·3.	
		Find the probability that Mali will pick a yellow ball.	[2]
	•		
	(b)	A different bag contains 10 balls. Some of the balls in the bag are blue. All the other balls are white. Morgan picks a ball from the bag at random. He says,	
	_	The probability that I will pick a blue ball from the bag is 0.25.	
		Explain why Morgan cannot be correct.	[1]
	• · · · · · · · · · · · · · · · · · · ·		
			······

7.	Solve each of the following equations.	0
	(a) $4y-3=15$	
	(b) $8x - 38 = 17 - 3x$ [3]	
	$[O] \delta x = 3\delta = 17 = 3x$	

3.	In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.
	A rectangle and a trapezium are shown below.
	8 m 2x 9 m
	The area of the rectangle = $48 \mathrm{m}^2$. The width of the rectangle is represented by x . The height of the trapezium is twice the width of the rectangle.
	Calculate the area of the trapezium. You must show all your working. [4 + 2 OCW]

3300U301 09

9.	Write down four whole numbers so that: • they are all between 1 and 15 inclusive • they have a mode of 7 • they have a median value of 8.5 • their mean is 9.	Examiner only
	Write your numbers in the boxes below. [3]	I
		•
		-
		-
		33000301

Turn over.

4	D		
<i>A</i> ←	B ●		<i>C</i>
		Dia drav	gram not vn to scale
BC is a straight road, $V = 56 \text{km}$.	where the ratio AB : BC = 3 :	4.	
Calculate the length of Ealculate the length of Ealcul	3C. es. working.		[4]
L	ength of <i>BC</i> =	miles	

11. The table below shows some of the values of $y = x^2 + x - 4$ for values of x from -3 to 3.

x	-3	-2	-1	0	1	2	3
$y = x^2 + x - 4$	2	-2		- 4		2	8

(a) Complete the table by finding the values of y for x = -1 and for x = 1. [2]

(b) On the graph paper opposite, draw the graph of $y = x^2 + x - 4$ for values of x from -3 to 3.

(c) Use your graph to solve the equation $x^2 + x - 4 = 0$. Give your answers correct to 1 decimal place. [1]

x = or x = ...

Examiner only

2.	The children in year 5 and year 6 in a primary The children were asked, "How many pets do The results are shown in the pie chart and bar No child in either year had more than 5 pets.	you have?"
	4 pets No pets 1 pet	Frequency 8 6 4 2 0 0 1 2 3 4 5 Number of pets
	Year 5	Year 6
	Year 5 There are 36 children in year 5. One child is chosen at random from all the child what is the probability that this child has no management.	ildren in year 5 and year 6.
	There are 36 children in year 5. One child is chosen at random from all the chi What is the probability that this child has no m	ildren in year 5 and year 6.
	There are 36 children in year 5. One child is chosen at random from all the chi What is the probability that this child has no m	ildren in year 5 and year 6.
	There are 36 children in year 5. One child is chosen at random from all the chi What is the probability that this child has no m	ildren in year 5 and year 6.
	There are 36 children in year 5. One child is chosen at random from all the chi What is the probability that this child has no m	ildren in year 5 and year 6.
	There are 36 children in year 5. One child is chosen at random from all the chi What is the probability that this child has no m	ildren in year 5 and year 6. nore than 1 pet? [6]
	There are 36 children in year 5. One child is chosen at random from all the chi What is the probability that this child has no m	ildren in year 5 and year 6. nore than 1 pet? [6]

13.	Write down an expres	ssion for the	e nth ter	m of the	following	sequence.	[2]
		15,	9,	3,	-3,		

A and B are independent events. The probability of event A occurring is 0·6. The probability of event A and event B occurring is 0·48.							
(a)	Complete the tree diagram.						
•••••							
•••••							
•••••	D						
	B occurs						
	A occurs						
	0·6 B does not						
	occur						
	B occurs						
	A does not occur						
	B does not						
	occur						
(b)	Calculate the probability of neither event A nor event B occurring.	1					
•••••							
•••••							
• • • • • • • • • • • • • • • • • • • •							

© WJEC CBAC Ltd.

(3300U30-1)

Examiner only

Examiner 15. In the diagram:
AB and ED are parallel
triangles ABC and DEC are similar. D 15 cm В 10.5 cm 8cm C 10 cm Diagram not drawn to scale Calculate the length of CE. [2] (a) Calculate the length of AB. (b) [2]

only

Solve the following simultaneous equations using an algebraic (not graphical) method. You must show all your working. [4]
2x + 3y = 29 $5x - 4y = -8$

Examine
only

17. Circle the correct answer for each of the following s						g statements	statements.			
	(a)	$7.2\mathrm{m}^3$ is	equal to						[1]	
	720	cm ³	72000cm	n ³	$7.2 \times 10^{5} \text{ cm}^{3}$	7·2 ×	10 ³ cm ³	$7.2 \times 10^6 \text{cm}^3$		
	(b)	$36^{\frac{1}{2}}$ is ea	qual to						[1]	
			18	6	<u>1</u> 18	<u>1</u>	<u>1</u> 36			
18.			of 30000 1.5×10 ⁴ ver as a de						[2]	
					END OF PA	APER				

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

