

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE In Further Mathematics (8FM0) Paper 26 Further Mechanics 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P72063A* Publications Code 8FM0_26_2206_MS* All the material in this publication is copyright © Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- dM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

 M(A) Taking moments about A
 N2L Newton's Second Law (Equation of Motion)
 NEL Newton's Experimental Law (Newton's Law of Impact)
 HL Hooke's Law
 SHM Simple harmonic motion
 PCLM Principle of conservation of linear momentum
 RHS, LHS Right hand side, left hand side

Question			Sch	eme	Marks	AOs
1	.(a)	ABF BCEF	CDE	lamina		
		$\frac{3}{2}a^2 \qquad 9a^2$	$\frac{3}{2}a^2$	$12a^{2}$	B1	1.2
		$a \qquad \frac{3}{2}a$	а	$\overline{\mathcal{Y}}$	B1	1.2
		Moments about A	ID		M1	2.1
		$\frac{(\frac{3}{2}a^2 \times a) + (9a^2 \times a)}{(\frac{3}{2}a^2 \times a) + (9a^2 \times a)}$	$\times \frac{3}{2}a) + (\frac{3}{2}a^2 \times a)$	$=12a^2\overline{y}$	A1	1.1b
		$\overline{y} = \frac{11a}{8} *$			A1*	2.2a
					(5)	
1	(b)	Moments about <i>F</i>	V , $Mg \times (3a - \frac{11a}{8})$	=3aT	M1	3.1a
		$T = \frac{13Mg}{24} \qquad (0.$	541666666 <i>Mg</i>)		A1	1.1b
					(2)	
					(7 n	narks)
Not	es:					
1a	B1	Any equivalent ra	atios e.g. 3 : 18 :	3:24		
	B1	Or correct distant	ces from a parallel	axis		
	M1	Or moments about a parallel axis				
	A1	Correct unsimplified equation for their axis				
	A1*	If they have centr	× *	ained <i>ya</i>) then the <i>a</i> might not be g the maximum score is B1		ıg.
1b	M1	A complete meth	od to obtain an eq	uation in <i>T</i> only		
	A1	0.54Mg or better				

Que	estion		Sch	eme	Marks	AOs
2	.(a)	ABCD	BEC	framework		
		6 <i>a</i>	πα	$6a + \pi a$	B1	1.2
		$\frac{1}{2}a$	$(-)\frac{2a}{\pi}$	\overline{x}	B1	1.2
		Moments abo	out BC		M1	2.1
		$6a \times \frac{1}{2}a - \pi a$	$\times \frac{2a}{\pi} = (6a + \pi a)\overline{x}$		A1	1.1b
		$\overline{x} = \frac{a}{6+\pi} *$			A1*	2.2a
					(5)	
2	2(b)	Angle DAE =	$= \tan^{-1}\left(\frac{2a}{a}\right)$		M1	1.1b
		Angle DAG =	$= \tan^{-1} \left(\frac{a - \frac{a}{6 + \pi}}{a} \right) = 1$	$\tan^{-1}\left(\frac{5+\pi}{6+\pi}\right)$	M1	1.1b
		Angle = DAB	E – DAG		M1	3.1a
		21.74637			Al	1.1b
					(4)	
2	2(c)	Moments abo	out OA		M1	2.1
		$kMa\sin 45^\circ$	$= M\overline{x}\sin 45^{\circ}$		A1	1.1b
		$k = \frac{1}{6+\pi} (=$	= 0.10939)		A1	1.1b
					(3)	
2	2(c)	Moments abo	out O		M1	2.1
8	alt	$kM \begin{pmatrix} 0 \\ a \end{pmatrix} - M$	$\binom{\frac{a}{6+\pi}}{0} = (k+1)M\binom{-\lambda}{\lambda}$		A1	1.1b
		$k = \frac{1}{6+\pi} (=$	= 0.10939)		Al	1.1b
					(3)	
		(12 marks)				
Not						
2a	B1	Any equivale		1 •		
	B1		stances from a paralle	el axis		
	M1		about a parallel axis g framework. If <i>BC</i> i	ncluded twice mark as a misr	ead.	

	A1	Correct unsimplified equation for their axis. Allow within a vector equation	
	A1*	Correct given answer correctly obtained	
2b	M1	Correct relevant angle (or side if they use the cosine rule) Do not need to evaluate: accept $\tan \alpha = \dots$ or $\alpha = \tan^{-1} \dots$ (e.g. 63.4° or 90° – 63.4°)	
	M1	Another correct relevant angle (or side if they use the cosine rule) Do not need to evaluate: accept $\tan \beta = \dots$ or $\beta = \tan^{-1} \dots$ (e.g. 41.68° or 90° – 41.68°)	
	M1	Correct method for finding the required angle	
	A1	22° or better	
2c	M1	Complete method to give an equation in <i>k</i> only	
	A1	Correct equation in k only	
	A1	0.11 or better	

Que	stion	Scheme	Marks	AOs		
3 (a)		Resolving vertically	M1	3.4		
		$R\cos\alpha - F\sin\alpha = mg$	A1	1.1b		
		Equation of motion horizontally	M1	3.4		
		$R\sin\alpha + F\cos\alpha = \frac{mV^2}{r}$	A1	1.1b		
		Use of $F = \mu R$	M1	3.4		
		Solve for V	M1	3.1b		
		$V = \sqrt{\frac{(3+4\mu)rg}{4-3\mu}} *$	A1*	1.1b		
			(7)			
3	(b)	Use of $\mu = 0$ oe	M1	2.1		
		$U = \sqrt{\frac{3rg}{4}}$	A1	1.1b		
			(2)			
3	(c)	Since $3 + 4\mu > 3$ and $4 - 3\mu < 4$ oe	M1	2.1		
		$\frac{3}{4} < \frac{3+4\mu}{4-3\mu}$ and hence $U < V$ *	A1*	2.2a		
			(2)			
		1	(11 n	narks)		
Note	es:					
3a	M1	Correct no. of terms, dim correct, condone sin/cos confusion and sign e	errors			
	A1	Correct equation				
	M1	Correct no. of terms, dim correct, condone sin/cos confusion and sign errors				
	A1	Correct equation				
	M1	Independent but must be used in an equation				
	M1	Substitute for trig and solve for V. Dependent on preceding M marks.				
	A1*	Correct given answer correctly obtained				
3b	M1	If they don't use $\mu = 0$, we need to see the first 6 marks from (a), witho	ut friction			
	A1	cao				
3c	M1	Any convincing argument				
	A1*	Given answer correctly obtained				

	SC: Allow M1A0 if they work in reverse to show that if $U < V$ then $\mu > 0$ and make an appropriate comment

Question	Scheme	Marks	AOs
4(a)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{1}{2} \times 6\mathrm{e}^{2t}$	M1	1.1b
	= 2 <i>v</i> +1 *	A1*	1.1b
		(2)	
4(b)	$3 (m s^{-2})$	B1	1.1b
		(1)	
4(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{2}(3\mathrm{e}^{2t}-1)$ and integrate	M1	3.3
	$x = \frac{1}{2}(\frac{3}{2}e^{2t} - t)(+C)$	A1	1.1b
	Put either $\frac{1}{2}(3e^{2t}-1) = 1$ or 4 and solve for t	M1	2.1
	t = 0	A1	1.1b
	$t = \frac{1}{2} \ln 3 (0.549306)$	A1	1.1b
	Substitute their t values into their x expression and subtract	M1	3.1a
	$\frac{3}{2} - \frac{1}{4} \ln 3$ (m)	A1	1.1b
		(7)	
		(10 marks)	

(10 marks)

Not	Notes:			
4a	4a M1 Need to see evidence of attempt to differentiate v wrt t , not just a statement			
	A1*	Given answer correctly obtained		
4b	B1	cao		
4c M1 Set up differential equation and attempt to solve		Set up differential equation and attempt to solve		
	A1	Condone missing C		
	M1	Use at least one of the given speeds to find a <i>t</i> value		
	A1	cao		
	A1	0.55 or better		
	M1	Substitute their <i>t</i> values to find <i>x</i> values and showing subtracting. Need to see evidence. M0 if using 1 and 4.		
	A1	cao		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom