

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE In Further Mathematics (8FM0) Paper 23 Further Statistics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P71967A* Publications Code 8FM0_23_2206_MS* All the material in this publication is copyright © Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Que	estion	Scheme	Marks	AOs
1	.(a)	(i) $\frac{40 \times 174}{400}$ (ii) $\frac{96 \times 226}{400}$	M1	1.1b
		= 17.4 = 54.24	A1	1.1b
			(2)	
(b)		 H₀: There is no association between the application of the treatment and the number of years that a fruit tree remains free from this disease. H₁: There is an association between the application of the treatment and the number of years that a fruit tree remains free from this disease. 	B1	3.4
		$\sum \frac{(O-E)^2}{E} = \frac{(15 - "17.4")^2}{"17.4"} + \frac{(61 - "54.24")^2}{"54.24"} + 2.642$	M1	1.1b
		= 3.815 awrt 3.82	A1	1.1b
		$[3.82 <] \chi^2_{2,(0.05)} = 5.991$	B1	3.1b
		There is no evidence of association between the application of the treatment and the number of years that a fruit tree remains free from this disease.	A1ft	2.2b
			(5)	
			(7 n	narks)
Not	es:			
(a)	M1	A correct method to work out either expected frequencies – or 1 correct		
(b)	A117.4 and 54.24 (accept 54.2)(b)B1:For both hypotheses in terms of "association" or independence" Must me application/treatment and years in at least one and be connected correctly [Use of link, relationship or connection. is B0 but allow for last A1ft]			nd H1
		A correct method to find the total χ^2 value. If their values from (a)		
	M1:	If no method shown at least 1 of the two missing χ^2 contributions must	he correc	t
		$(0.331\left(\frac{48}{145}\right)$ and 0.8425 allow 2sf). Implied by awrt 3.82		
	A1:	awrt 3.82 or awrt 3.83		
	B1:	Using the degrees of freedom to find the χ^2 CV for the appropriate model. awrt 5.991 allow 5.9915		
	A1ft:	Ft "their 3.82" and their CV or <i>p</i> -value. Correct conclusion in context. (application or treatment and years) This is independent of hypotheses ie if they should accept H_0 then they need eg there is no association between If they should reject H_0 then they need there is an association" Allow relationship, link, connection for association BUT do not accept correlation or contradictory statements		
		NB If <i>p</i> -value [0.148388] given instead of CV could get B1M1A1B0A give the CV as well	1 unless th	ney

Que	estion	Sch	eme	Marks	AOs	
2	2(a)	$X \sim Po(3)$		M1	3.3	
		P(X=4) = 0.1680		Al	1.1b	
				(2)		
	(b)	$e^{-0.6 \times t} < 0.16$ oe		M1	3.1b	
		$-0.6 \times t < \ln 0.16$		dM1	1.1b	
		t = 3.054 $t = 3.1$		A1	1.1b	
				(3)		
	(c)	$H_0: \lambda = 1.4$ $H_1: \lambda > 1.4$		B1	2.5	
	()	$J \sim Po(5.6)$		B1	3.3	
		Method 1	Method 2			
		$P(J \ge 12) = 1 - P(J \le 11)$	$P(J \ge 11) = awrt \ 0.0282 \ and$	M1	1.1b	
			$P(J \ge 10) = awrt \ 0.0591$			
		= 1 - 0.9875				
		= 0.01(248)	$J \ge 11$	A1	1.1b	
		0.01(24) < 0.05 or 12>11 or 12 is in	the critical region or 12 is			
		significant or Reject H_0 . There is evidence at the 5% level of			2.2b	
		significance that the rate of fish ca	ught may have increased .			
				(5)		
Net				(10 n	1arks)	
Not	1	Writing or using Do(2)				
(a)	A1:	Writing or using Po(3) awrt 0.168				
(b)		Forming a correct equation from the information given. Condone $e^{-0.6\times t} = 0.16$ or finding $P(X=0)$ for $[t=3.1]$ 0.155 and $[t=3]$ 0.165 or $P(X=0)$ for $[\lambda = 1.84]$ 0.158 and $[\lambda = 1.83]$ 0.1604				
	dM1:	Dependent on the 1st method mark. Or $[t = 3.05] 0.1604$ or $[\lambda = 1.835]$		quality/equa	tion.	
	A1:	3.1				
	NB	An answer of 3.1 gains 3/3				
(c)	B1:	Both hypotheses in terms of λ or μ . A	Allow 5.6 instead of 1.4			
	B1:	Writing or using Po(5.6)				
	M1:	For writing or using $1 - P(J \le 11)$ Implied by a correct probability or CR Allow $P(J \le 10) = awrt \ 0.972 \text{ and } P(J \le 9) = awrt \ 0.941$				
	A1:	0.01 or better (allow truncation eg 0	0.01 or better (allow truncation eg 0.0124)			
		NB Allow M1 A1 if $P(J \le 11) = 0.9875$ is written on its own				
	A1:	Independent of hypotheses. A correct conclusion based on their probability with 0.05 conclusion in context (bold words) Do not accept contradicting statements.				

Que	estion	Scheme	Marks	AOs		
3(a) (b)		Not all the expected frequencies are likely to be over 5 Or the sample size is too small.	B1	3.5b		
			(1)			
		5 degrees of freedom since the parameter is not estimated from the data [and the totals agree]	B1	2.4		
			(1)			
	(c)	H ₀ : B(5,0.6) is a suitable model H ₁ : B(5,0.6) is not a suitable model	B1	3.4		
		$\sum \frac{(O-E)^2}{E} = \frac{(2-5.12)^2}{5.12} + \dots + \frac{(51-38.88)^2}{38.88}$	M1	2.1		
		= 15.8063 awrt 16	Al	1.1b		
		$[15.8>] \chi^2_{5,(0.05)} = 11.070$	B1ft	1.1b		
(d)		B(5,0.6) is not a suitable model [for the number of heads spun]	Alft	3.5a		
			(5)			
		$\frac{[0\times2] + (1\times27) + (2\times93) + (3\times181) + (4\times146) + (5\times51)}{500} [= 3.19]$	M1	3.3		
		B([5], $p = \frac{3.19}{5} = 0.638$)	Al	1.1b		
			(2)			
No	tes:	I	(9 n	narks)		
(a)	B1:	For recognising the limitations of using a chi squared model on small sample sizes eg 20 is not large, not enough data, sample needs to be larger, you may need to combine cells.				
(b)	B1 :	For 5 [dof] and a correct reason indicating parameter(probability) is not estimated. Condone missing comment about totals				
(c)	B1:	Both hypotheses correct Must have B(5,0.6) or binomial with number (n) = 5 and probability(p) = 0.6 (in at least 1) and be attached to H ₀ and H ₁ the right way roun				
		Empting to find the test statistic $\sum \frac{(O-E)^2}{E}$ (at least two correct expressions,				
	M1:	fractions or decimals) or $\chi^2 = \sum \frac{O^2}{E} = \frac{(2)^2}{"5.12"} + \dots + \frac{51^2}{38.88} - 500$ (at leas	ast two corr	rect		
		expressions, fractions or decimals plus the -500) Implied by awrt 15.				
	A1:	Awrt16Allow 11.07 or awrt 11.070 For correct CV, ft their answer to (b)				
	B1ft:	$\mathbf{NB} \text{ dof 3 is } 7.815 \text{ dof 4 is } 9.488$				
	A1ft:	Ft "their 11.070" and their CV or p value. A correct conclusion independent of the hypotheses ie [If they should reject H ₀ then they need "is not a suitable model.If they should accept H ₀ then they need "is suitable"] Allow Binomial is not a suitable model eg condone B(500, 0.6) is not a suitable model. Do not accept contradictory				
		statements		J		
		NB If <i>p</i> value [0.007419] given instead of CV they could get B1M1A1B0A1unless they give the CV as well				
(d)	M1:	For a correct method using the data to improve the model. Implied by				
	A1:	Correct model. Condone use of any value of n Accept Binomial with	p = 0.638			

Ques	tion	Scheme	Marks	AOs			
4(a))(i)	$E(X) = [0 \times p] + (2 \times 0.25) + 3q + (6 \times 0.4) [= 2.9 + 3q]$	B1	1.1b			
(ii	i)	$E(X^{2}) = [0 \times p] + (2^{2} \times 0.25) + 3^{2}q + (6^{2} \times 0.4) [= 15.4 + 9q]$	B1	1.1b			
()			(2)				
Ո)	$("15.4+9q") - ("2.9+3q")^2 = 3.66$	M1	1.1b			
(b)		$9q^2 + 8.4q - 3.33 = 0 \implies q = 0.3 \text{ and } -\frac{37}{30}$					
		,	M1	1.1b			
		$q = 0.3^*$ since q cannot be negative SC ("15.4+9×0.3")-("2.9+3×0.3") ² can get M1M0A0	A1cso*	2.4			
		Se $(13.4+9\times0.5) - (2.9+5\times0.5)$ can get M1M0A0	(3)				
(a	<u>.</u>	$P(x_1 + x_2 + x_3 + x_4 = 20) = P(6,6,6,2 \text{ or } 6,6,2,6 \text{ or } 6,2,6,6 \text{ or } 2,6,6,6)$	(3) M1	1.1b			
(c	;) -	$\frac{1}{(x_1 + x_2 + x_3 + x_4 - 20) - 1} (0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	M1	1.10			
	_	$= 4 \times 0.4^{\circ} \times 0.25$ = 0.064 oe	M1 A1	1.1b			
	-	- 0.004 00	(3)	1.10			
(d	l)	$P(x_5 + x_6 \ge 7) = P(6,6 \text{ or } 6,3 \text{ or } 6,2)$	(3) M1	3.1a			
(u)		$= (0.4^{2}) + 2 \times (0.4 \times 0.3) + 2 \times 0.4 \times 0.25 \ [= 0.6]$	M1	1.1b			
	_	$P(\text{score} \ge 27) = "0.064" \times "0.6" [= 24/625 = 0.0384]$	M1	1.1b			
		$Y \sim B(3, "0.0384")$	dM1	3.3			
		$P(Y \ge 1) = 1 - P(Y = 0)$	M1	1.1b			
		= 0.1108	Alcso	1.1b			
			(6)				
Note			(14 m	narks)			
(a)(i)	B1:	Correct expression for E(X) need not be simplified					
(ii)	B1:	Correct expression for $E(X^2)$ need not be simplified					
(b)	M1:	Using "their $E(X^2)$ " – "their $(E(X))^2$ " = 3.66	N 1 1' 4				
	M1:	Rearranging to get a correct 3 term quadratic (condone missing = $(0.3 \text{ and } -37/30(\text{awrt } -1.23) \text{ or } (10q-3)(30q+37))$					
	A1cso:	as a with a common why $\frac{37}{20}$ is a limit at d. Minimum required is $a > 0$ at					
(c)	M1:						
	M1:	Correct calculation					
	A1:	0.064 oe only eg 8/125					
(d)	M1:	Realising all the different combinations 7 or more can be scored from 2 games. (no					
	M1:	Fully correct method.	,				
		For multiplying "their (c)" with "their $P(x_5 + x_6 \ge 7)$ " providing at le	east 2				
	M1:	combinations are used to find $P(x_5 + x_6 \ge 7)$ "					
		Dependent on 3 rd M1 being awarded for using or writing					
	dM1:	B(3, "their P($x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 27$)") (1-"0.0384") ³ or					
	M1:	3					
	A1cso:	awrt 0.111 from correct working					
NB (b		B marks					
		method "0.064"× (0.4^2) +0.064×2× (0.4×0.3) +0.064×2× (0.4×0.25)	is M1M1M1	l			
All 3	but no a	arrangements ie "0.064"× (0.4^2) +0.064× (0.4×0.3) +0.064× (0.4×0.25)	M1M0M1				
		nbinations used for >7 eg $0.064 \times (0.4 \times 0.3) + 0.064 \times (0.4^2)$ or $2 \times (0.4^2)$		0M1			
1 11 10a		$\frac{1}{10} \frac{1}{10} \frac$	~ 0.5 / 1010101	U1VII			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom