Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCSE In Physics (1PH0) Paper 2H

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Publications Code 1PHO_2H_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.
Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.
When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	AO3 2a and 2b
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Question number	Answer	Additional guidance	Mark
$\mathbf{1}(\mathbf{a)}$	at least three radial lines from the charge (1)	do not allow curved lines ignore circles without arrows	(2) AO1.2
	direction shown away from the charge (1)	consistently	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 ~ (b) ~}$	an explanation linking any two from		(2) AO2.1
eharged by friction (1) off ruler (1)	woolly jumper becomes negative (1)	electrons / negative charges transfer to jumper ignore positive electrons / charges / particles	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (c)}$	an explanation including any three from:	accept marks scored on diagram the leaf (becomes) charged (1) ignore polarity for this marking point states charge opposite to what they have on the leaf	(3) AO1.1
	opposite charges attract (1) as a result of movement of electrons (between earth and leaf) (1) idea of spray reaching parts of the back of the leaf (1) charged droplets repel each other (having the same charge) (1)	ignore positive electrons / charges / particles allow all over	

Total 7 marks

Question number	Answer	Additional guidance	Mark
2 (a)(i)	Substitution and evaluation (1)		(1)
	$15(\Omega)$		AO2.1

Question number	Answer	Additional guidance	Mark
2 (a)(ii)	select / recall (1) (power =) V x I or (power $=$) $I^{2} \times R$ or $($ power $=) \frac{V^{2}}{R}$ substitution and evaluation (1) (power =) $1.4(\mathrm{~W})$	(power $=$) 4.5×0.3 $0.3^{2} \times 15$ $\frac{4.5^{2}}{15}$ allow 1.3(5) (W) award full marks for the correct answer without working	$\begin{aligned} & \text { (2) } \\ & \text { AO2.1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
2 (b)	an explanation linking any three from: lamp in second circuit is dimmer (than lamp in first circuit) (1) current in second circuit is less (than in first circuit) (1) accept reverse throughouts	(3) AO1.1 each lamp (in second circuit is) less / shared (1) idea that power of each lamp (in second circuit) is less / shared (1) the (total) resistance of the second circuit is more (than in first circuit) (1)	

Question number	Answer	Additional guidance	Mark
2 (c)	a diagram of a circuit including all of the following: power supply / cell(s) / battery identifiable resistance wire an ammeter a voltmeter (1)	accept symbols accept ohmmeter with resistance wire only	(3) AO2.2
	plus any two from ammeter in series (1) voltmeter in parallel (1) ignore lamp(s) / additional resistors		
	indication of tapping off / using 50 cm of resistance wire (1)	e.g. (crocodile) clips	

Total 9 marks

Question number	Answer	Mark		
$\mathbf{3 ~ (a)}$	$[\mathrm{x}]$ B	bigger than in water	less than water	(1) AO1.1
	A is incorrect because the density of steam is less than water. C is incorrect because the space between the particles increases. D is incorrect because the space between the particles increases and density of steam is less than water.			

Question number	Answer	Additional guidance	Mark
3 (b)	calculation of change in volume (1) $\left(530 \mathrm{~cm}^{3}-490 \mathrm{~cm}^{3}\right)=40\left(\mathrm{~cm}^{3}\right)$ substitution (1) $7.9=\frac{\text { mass }}{40}$ rearrangement and evaluation (1) $\text { (mass }=7.9 \times 40 \text {) }$ (mass =) 316 (g) evaluation to 2 sig fig (1) 320 (g)	measurement mark using scale allow use of incorrect volume answers without working 316 (g) scores 3 marks 0.316 kg scores 3 marks 316 to any other power of 10 scores 2 marks 4187 or 3871 scores 2 marks (incorrect volume) any answer written to 2sf independent mark answers without working 320 scores 4 marks 320 to any other power of ten scores 3 marks 4200 scores 3 marks 3900 scores 3 mark	$\begin{aligned} & \text { (4) } \\ & \text { AO2. } 2 \end{aligned}$

Question number	Answer	Additional guidance	Mark
3 (c)	an explanation linking density of wood less (than that of water) (1)	allow wood floats / should be submerged allow wood absorbing water	AO2.2
	less (volume of) water displaced (than volume of wood) (1)	allow (idea of) incorrect volume reading allow (idea that) the volume cannot be measured this way	

Question number	Answer	Additional guidance	Mark
$\mathbf{3 ~ (d)}$	A description including idea of change of state / solid changes (1)	accept equivalents e.g. turns into / goes from to	AO1.1
	to gas / vapour (directly)(1)	allow reverse i.e. gas \rightarrow solid	may be via appropriate example e.g. ice \rightarrow water vapour / steam or reverse (2 marks)

Question number	Answer	Additional guidance	Mark
4 (a)(i)	substitution (1) (pressure =) $\frac{2500}{4 \times 0.022}$		AO2.1
	evaluation (1)	(2) any number rounding to 28000 e.g. 28 400, 28410,28409 award full marks for the correct answer without working	
	28000 (Pa)	award one mark for numbers that round to 110000 (Pa) (missing 4 in denominator)	

Question number	Answer	Additional guidance	Mark		
(a) (ii)	An explanation linking any two from camel is less likely to sink into the soft ground (1) (same) force / weight is distributed / spread out (1)	ORA for donkey ignore pressure is spread out	(2) AO3.1		
	camel's hoof has greater (surface) area (than donkey) (1)	wider			
camel's hoof exerts less					
pressure (than it would if hoof					
were smaller) (1)				\quad	if no other marks
:---					
scored then allow 1					
mark for					
split in camel hoof					
enables better grip					
(as it walks)	\(\quad\left\{\begin{array}{l} 				

\hline\end{array}\right.\)

Question number	Answer	Additional guidance	Mark
4 (b)(i)	points plotted to within \pm 1 small square $(0.100,99.7) \quad(1)$ $(0.250,101.15) ~(1)$	AO2.1	

Question number	Answer	Additional guidance	Mark
4 (b)(ii)	best fit straight line passing through at least four of the points (1)	do not accept tramlining (multiple lines / curves) ignore slight shakiness in drawing	AO2.1

Question number	Answer	Mark
4 (b)(iii)	D $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$	(1) AO1.1
	Figure 10 shows a linear graph with a positive gradient and intercept	

Question number	Answer	Additional guidance	Mark
4 (b)(iv)	answer between 98.6 and $98.8(\mathrm{kPa})$	allow ecf from their line of best fit in b(ii)	(1) AO3.2

Question number	Answer	Additional guidance	Mark
4 (c)	any two from	credit mark points seen on graph	(2) AO3.2
pressure(s) would be greater (values) (1) steeper gradient of graph (1)	bigger gradient / steeper line (of best fit)		
both straight lines (1) intercept (on pressure axis) the same (1)	both linear pressure at surface is the same		

Question number	Answer	Additional guidance	Mark
$\mathbf{5}$ (a) (i)	consistent arrows showing magnetic field direction(s) (1)	arrows showing direction out of N, towards and into S	AO1.2 minimum of two
arrows			
all arrows shown			
must be in the			
correct direction			

Question number	Answer	Additional guidance	Mark
$\mathbf{5}$ (a) (ii)	' X ' placed just/immediately to the left of the N pole or just/immediately to the right of S pole (1)	(1) AO1.1	
allow on the			
letters N or S			
do not allow			
further inside			
the magnet			

Question number	Answer	Additional guidance	Mark
5 (a) (iii)	A description to include any two from: (in comparison with bar magnet's field shown the uniform field has:)	(in comparison with uniform field the bar magnet's field lines:)	(2) AO3.2
	1. only one direction (1) 2. straight lines (1)	vary in direction curved lines	converge / diverge
	4. equidistant lines (1)	vary in distance(s) apart / gap everywhere (1)	if no other mark is awarded, credit any diagram showing a uniform magnetic field for 1 mark

Question number	Answer	Additional guidance	Mark
$\mathbf{5}$ (b)	(inside) a solenoid / long coil (with a current / power supply) (1)	give credit for diagrams	(1)
		AO1.2 accept: horseshoe magnet (between / using) pair of Magnadur / flat magnets (between / using)	Helmholtz coils (between / using) two bar magnets, with unlike poles facing each other

Question number	Answer	Additional guidance	Mark
$\mathbf{5}$ (c) (i)	Sketch including any two from at least two field lines outside the Earth approximately aligning with compasses (1) at least two field lines continue inside the Earth towards imaginary poles (1)	A03.1 field lines need to have a gap inside the Earth	ignore arrows on field lines inside the Earth

Question number	Answer	Additional guidance	Mark
5 (c) (ii)	(magnetic outer) core (1)	moving charges/ions	(1)
			AO1.1

Question number	Answer	Additional guidance	Mark
5(d)	rearrangement and substitution (1) $\begin{aligned} & \left(B=\frac{F}{I \times 1)}\right. \\ & =\frac{1.11 \times 10^{-5}}{93\left(.1 \times 10^{-3}\right) \times 0.6(000)} \end{aligned}$ evaluation (1) $2.0 \times 10^{-4}(\mathrm{~T})$	$0.0002(\mathrm{~T})$ accept any number that rounds to $2.0 \times 10^{-4}(\mathrm{~T})$ e.g. $1.989 \times 10^{-4}(\mathrm{~T})$ any number that rounds to 2.0×10^{-7} (T) e.g. $1.987 \times 10^{-7}(T)$ is awarded 1 mark only award full marks for the correct answer without working	$\begin{aligned} & \text { (2) } \\ & \text { AO2.1 } \end{aligned}$

Total 10 marks

Question number	Answer	Mark
$\mathbf{6 (a)}$	\boxtimes A acceleration	(1) This is the only vector quantity from the options given

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (b) (i)}$	substitution and rearrangement (1) (force $=\frac{\text { moment) }}{\text { distance }}$ $=\frac{0.6}{3\left(\times 10^{-1}\right)}$ evaluation (1) $2(.0)(\mathrm{N})$	(2) AO2.1	
	reject $0.6 \times 3=1.8$	award full marks for the correct answer without working ignore significant figures 2(.0) to any other power of ten scores 1 mark maximum	

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (b) (i i)}$	correct calculation of one moment (1) correct calculation of second moment and adding of moments seen (1)	show that question either 2×0.1 or 1×0.5 seen	(2) AO2.1 scores 2 marks
		$0.2+0.5$ scores 2 marks	accept calculations in alternative units (e.g. N cm) if correct conversion(s) seen
if no other marks scored, the addition of two other moments can score 1 mark maximum			

Question number	Answer	Additional guidance	Mark
6 (b) (iii)	explanation linking three from: \{sum of / total \} clockwise moments = \{sum of / total \} anticlockwise moments (1) for a system in equilibrium / balance (1) clockwise and anticlockwise moments compared (1) so rod not in equilibrium (1)	about the same point / about a point e.g. clockwise moment > anticlockwise moment or reverse argument $\begin{aligned} & 0.7>0.6 \\ & 0.7 \neq 0.6 \end{aligned}$ rod will rotate clockwise MP4 can only be scored if MP3 awarded	(3) A03.2

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (c)}$	counting teeth on the pinion (1) evaluation (1)	allow between 18 and 22 inclusive	(2) AO3.1
	$1.6(\mathrm{~m})$	20 x 0.08 ecf number of teeth answer in range 1.44 to 1.76 scores 2 marks award full marks for the correct answer without working power of 10 error scores 1 mark maximum	

Question number	Answer	Additional guidance	Mark
7(a) (i)	```select and substitute (1) (\DeltaGPE =m x g x \Deltah) = 1100 x 3.7 x 1.8 (}\times1\mp@subsup{0}{}{3) evaluation (1) 7326000(J) evaluation to 2 s.f. (1) 7300000(J)```	any number rounding to 7300000 7326 scores 1 mark independent mark - any final answer stated to 2 s.f.	$\begin{aligned} & \text { (3) } \\ & \text { AO2.1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
7(a) (ii)	select and substitute (1) $\begin{aligned} (\Delta K E= & \left.1 / 2 m \times v^{2}\right) \\ & =1 / 21100 \times 88^{2} \end{aligned}$ evaluation (1) $4300000 \text { (J) }$	ignore minus signs accept numbers that round to 4300000 (J) e.g. 4259200 (J) award full marks for the correct answer without working	$\begin{aligned} & \hline(2) \\ & \text { AO2.1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{7}$ (a) iii	A description linking three from: 1. work is done against / by gravity (1)	KEY: attempt to explain how work done contributes towards the energy changes / conservation of energy thrusters / jets (on the rover) (1)	AO2.1 2. (work done) by air/atmospheric resistance on the parachute (and rover) (1)
4. this reduces the kinetic energy (store) (1)	5. (there is a) decrease in the gravitational potential energy (store) of the rover (1)	6. (there is a) transfer of chemical energy from the thrusters (1)	7. energy transferred to thermal energy (store) (1) 8. (transfer) mechanically (to the thermal store) (1)

Question number	Answer	Additional guidance	Mark
7(b) (i)	select and substitute (1)	all three numbers needed to show that	(1) AO1.1 $=P \times t)$
		allow 1800 (seconds) for 30×60 ignore evaluation	

Question number	Answer	Additional guidance	Mark
7(b) (ii)	select, rearrange and substitute (1) (input energy supplied $=$ energy provided by panel) efficiency $=\frac{2.16(\mathrm{MJ})}{(0 .) 27}$ evaluation (1) $8(.0) \times 10^{6}(\mathrm{~J})$	$\begin{aligned} & \frac{2160000}{(0 .) 27} \\ & \\ & 8000000(\mathrm{~J}) \\ & 8(.0) \mathrm{MJ} \end{aligned}$ award full marks for the correct answer without working $8(.0) \times 10^{4}(\mathrm{~J})$ gains 1 mark (uses 27\% incorrectly)	$\begin{aligned} & \text { (2) } \\ & \text { AO2.1 } \end{aligned}$

TOTAL 11 marks

Question number	Answer	Mark
$\mathbf{8 (a)}$	Q C Only this is the correct symbol for a thermistor	AO1.1 AOM

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (i)}$	A description to include	as temperature increases resistance decreases (1) non-linear / decreasing gradient (1)	ORA allow exponential / inversely proportional in this context curve gets less steep as temperature increases ignore negative correlation unqualified quoted values are insufficient

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (i i)}$	uses a right-angled triangle to calculate slope with a line of grazing incidence at $\theta=30^{\circ} \mathrm{C}$ (1)	tangent seen and used, drawn between $\theta=25$ and $35^{\circ} \mathrm{C}$	(303.2 AOM

Question number	Answer	Additional guidance	Mark
8 (c) (i)	explanation linking a suitable improvement (1) with a matching reason (1)	for example place thermometer close(r) to the thermistor stirring digital thermometer thermometer measures same temperature as thermistor to get uniform temperature (for stirring) thermometer with better resolution or scale	(2) A03.3

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (c) \text { (ii) }}$	an explanation including: method 2 has measurements to more significant figures / more decimal places (than method 1) (1)	(2) so the calculated answer can have more s.f.'s / d.p.'s (1)	may be shown via a calculation accept an alternative argument in terms of consistency in final calculated answer ignore restating stem of question - e.g. so more precise ignore more accurate

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (a)}$	an explanation linking specific heat capacity concerns change in temperature (1) whereas specific latent heat concerns change of state (1)	accept specific heat capacity concerns heating up / cooling	AO1.1 accept any named change of state e.g. melting / freezing/ evaporating /boiling accept specific latent heat related to no change in temperature

Question number	Answer	Additional guidance	Mark
9 (b)	an explanation linking any three from: stir the water before taking a reading of temperature (1)	(3) AO1.2	
	(continue to) observe temperatures after switching off (1)	allow "for longer than 10 minutes"	allow wait(ing period) in correct context
record the maximum / highest /peak temperature reached (1)	until the temperature stops changing	take temperature reading at eye level (1)	conduction (and convection) take time (1)
takes time (for water / thermometer) to heat through			

$\begin{aligned} & \text { SSQ } \\ & \text { NO: } \end{aligned}$	CS NO:	Answer	Mark
9(c)*		Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 strand 1 (6 marks) - particles move faster (at a higher temperature) - greater velocity / speed means greater kinetic energy - since $K E=1 / 2 m v^{2}$ - heating increases KE (store) - KE (store) increase leads to higher (average) speeds - faster particles (at higher temperature so) hit container with more force / momentum exchange - bigger pressure because $p=F / A$ - particles hit container more frequently (at higher temperature) - so more force exerted on (walls of) container	(6) A01.1

Level	Mark	Descriptor
Level 1	0	No rewardable material.
Level 2	$3-4$	Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) -Presents an explanation with some structure and coherence. (AO1) Level 3 - Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1)
Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)		

Summary for guidance

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Level } & \text { Mark } & \text { Additional Guidance } & \begin{array}{l}\text { General additional guidance - the } \\
\text { decision within levels } \\
\text { Eg - At each level, as well as content, } \\
\text { the scientific coherency of what is } \\
\text { stated will help place the answer at the } \\
\text { top, or the bottom, of that level. }\end{array} \\
\hline & 0 & \text { No rewardable material. } & \\
\hline \text { Level 1 } & 1-2 & \begin{array}{l}\text { Additional guidance } \\
\text { isolated idea(s) of physics } \\
\text { e.g. recognising the speed- } \\
\text { temperature relationship or } \\
\text { the pressure temperature } \\
\text { relationship }\end{array} & \begin{array}{l}\text { Possible candidate responses } \\
\text { particles faster (at higher temperature) }\end{array} \\
\text { Level increases } 2 & 3-4 & \begin{array}{l}\text { Additional guidance } \\
\text { limited details about KE } \\
\text { or } \\
\text { limited details about } \\
\text { pressure }\end{array} & \begin{array}{l}\text { Kossible candidate responses } \\
\text { faster particles have greater kinetic } \\
\text { energy (store) }\end{array}
$$

(particles) hitting container more often

causes greater pressure\end{array}\right\}\)| fevessure increases (at a higher |
| :--- |
| temperature) |

Total 11 marks

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a)}$	an explanation linking three from:	(3) needle oscillates (1) moves side to side nositive and negative	either side of (centre) zero (1) accept N / north / S / south for pole do not accept magnet
	(in response to) pole entering and pole leaving (end of coil) (1)	accept current produced / induced	(producing) \{p.d. / voltage / emf\} induced (via changing magnetic field) (1) accept (induce) an alternating emf / voltage

Question number	Answer	Additional guidance	Mark
10(b)	selecting, rearranging and substituting (1) $\begin{aligned} & \left(V_{s}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{~N}_{\mathrm{p}}} \times \mathrm{V}_{\mathrm{p}}\right) \\ & =\frac{400}{700} \times 230 \end{aligned}$ selecting, rearranging and substituting (1) $\begin{aligned} & \left(I_{p}=\frac{V_{s}}{V_{p}} \times I_{s}\right) \\ & =\frac{131(.429)}{230} \times 1.75 \end{aligned}$ evaluation (1) $1(.00)(\mathrm{A})$	accept correct alternative calculation routes 1 mark for any voltage rounding to 130 V $\frac{130 \times 1.75}{230}$ 0.989 (A) using 130 award full marks for the correct answer without working	$\begin{aligned} & \text { (3) } \\ & \text { AO2.1 } \end{aligned}$

SSQ	CS	Answer	Mark
NO:		Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	A01.1

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	- Demonstrates elements of physics understanding, some of which may be inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a welldeveloped structure which is clear, coherent and logical. (AO1)

Summary for guidance

Level	Mark	Additional Guidance	General additional guidance - the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance isolated ideas e.g. identifying two of Q, S and R	Possible candidate responses Q and S are transformers R is a wire / cable
$\begin{aligned} & \text { Level } \\ & 2 \end{aligned}$	3-4	Additional guidance more detail about the process of what at least two of Q, R and S do / achieve	Possible candidate responses Q is a step-up transformer voltage increases R is a high voltage transmission line / cable / part of the National Grid S is a step-down transformer \rightarrow idea of reducing voltage to 230 V
Level 3	5-6	Additional guidance understanding is detailed and fully developed. includes detail about functions and efficiency explanation	Possible candidate responses need for step up and step-down functions via transformers to transfer energy at high voltages (voltage may be specified e.g. 400kV) transformers are not 100\% efficient smaller currents in transmission lines so less energy lost though heating those wires: makes system more efficient

Total 12 marks

