Pearson Edexcel

Mark Scheme Results

Summer 2022

Pearson Edexcel GCSE In Combined Science (1SC0) Paper 1PH

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Publications Code 1SCO_1PH_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.
Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.
When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1 a and $1 b$	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

[^0]| Question
 Number | Answer | Mark |
| :--- | :--- | :--- |
| 1(a) | B. when there are energy transfers, the total energy
 does not change | (1)
 AO1 |
| | A is not correct because the total energy does not reduce | |
| C is not correct because the total energy does not reduce | | |
| D is not correct because the total energy does not increase | | |

Question Number	Answer	Additional guidance	Mark
1(b)(i)	a diagram showing: apparatus labelled to include three from - thermometer - water - insulator / sand / sawdust / material - (copper) can thermometer in the water (1) arrangement for water and insulator in and between copper cans (e.g. as in diagram below) (1)	independent of arrangement ignore kettle and stop clock accept reverse positions for water and insulator	$\begin{array}{\|l\|} \hline \text { (3) } \\ \text { AO2 } \end{array}$

Question Number	Answer	Additional guidance	Mark
1(b)(ii)	any three factors from: \{mass / volume\} of water (1)	accept amount / specified values / "how much"	AO3
	\{volume / thickness / mass\} of insulators / materials (1)	accept amount / specified values / "how much"	\{starting / initial\} temperature of water (1)
accept temperature of hot / boiling water / specified values	time interval / temperature change (1)	accept specified values of interval or change unqualified "same time" is insufficient	

	Answer	Additional guidance	Mark
1(c)	a description giving as the density (of expanded polystyrene) increases the (thermal) conductivity decreases non-linear / gradient decreases / at a decreasing rate / levels off / plateaus / becomes (almost) constant	ORA allow inversely proportional / exponential for non-linear in this context ignore negative correlation unqualified quoted values are insufficient	$\begin{gathered} \text { (2) } \\ \text { AO2 } \end{gathered}$

\(\left.$$
\begin{array}{|l|l|l|l|}\hline & \text { Answer } & \text { Additional guidance } & \text { Mark } \\
\hline \text { 2(a)(i) } & \begin{array}{l}\text { an explanation linking two } \\
\text { from: } \\
\text { (wet road means) less / no } \\
\text { friction (between tyres and } \\
\text { road) (1) }\end{array} & \begin{array}{l}\text { accept reverse arguments } \\
\text { throughout } \\
\text { accept (road) more slippery / } \\
\text { less grip } \\
\text { accept idea of reduced visibility }\end{array} & \begin{array}{c}\text { (2) } \\
\text { AO1 }\end{array} \\
\begin{array}{ll}\text { (wet weather means) } \\
\text { increased stopping distance } \\
\text { (1) }\end{array} & \begin{array}{l}\text { accept braking or thinking } \\
\text { distance in this context }\end{array}
$$ \&

accept takes longer to slow

down / stop

ignore harder to brake\end{array}\right]\)| (slower speed means) |
| :--- |
| shorter braking / stopping |
| distance (1) |\quad| (dry weather / slower |
| :--- |
| speed) reduces possibility |
| of skidding / sliding / idea |
| of losing control / crashing |
| (1) |\quad

	Answer	Additional guidance	Mark		
2(a)(ii)	convert either distance or time (1) $(31 \mathrm{~m}=) \frac{31}{1000}(\mathrm{~km})$ or 0.031 (km) OR $(1 \mathrm{~s}=) \frac{1}{3600}(\mathrm{~h})=\frac{1}{60 \times 60}(\mathrm{~h})$ or 0.00028 (h) evaluation (1) $(31 \mathrm{~m} / \mathrm{s}=) 110(\mathrm{~km} / \mathrm{h})$	$(130 \mathrm{~km}=) 130 \times 1000(\mathrm{~m})$ $\text { or } 130000(\mathrm{~m})$ OR $(1 \mathrm{~h}=) 60 \times 60 \text { (s) }$ or 3600 (s) $(130 \mathrm{~km} / \mathrm{h}=) 36(.1)(\mathrm{m} / \mathrm{s})$ accept 111.6 or 112 (km/h) for 2 marks` accept $1860 \mathrm{~m} / \mathrm{min}$ and $\underline{2167 \mathrm{~m} / \mathrm{min}}$ for 1 mark each award full marks for the correct answer without working	$\begin{gathered} \text { (2) } \\ \text { AO2 } \end{gathered}$		
	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
2(a)(iii)	select and substitute into distance travelled $=$ average speed x time (1) $46=31 \times t$ rearrangement and evaluation (1) $(\mathrm{t}=) 1.48(3)(\mathrm{s})$ evaluation given to 2 sf (1) $\text { (} \mathrm{t}=) 1.5(\mathrm{~s})$	$\begin{aligned} & 31=\frac{46}{t} \\ & (t=) \frac{46}{31} \end{aligned}$ award two marks for the correct evaluation without working any answer written to 2 sf independent mark	$\begin{aligned} & \hline(3) \\ & \text { AO2 } \end{aligned}$		
	Answer	Additional guidance	Mark		
:---	:---	:---	:---		
3(a)(i)	selection and substitution (1) $(\mathrm{a}=)^{82(-0)} \frac{\text { note: this is a "show that" }}{36}$ question evaluation (1) $2.3\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	(2) AO2			
		accept any value that rounds to $2.3\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ accept $2.2\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ for 1 mark maximum answer of $2\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ without a substitution scores 0 marks			
	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
3(a)(ii)	substitution (1) $82^{2}\left(-0^{2}\right)=2 \times 2.3 \times x$ rearrangement (1) $(x)=\frac{82^{2}\left(-0^{2}\right)}{2 \times 2.3}$ evaluation (1) $1500 \text { (m) }$	allow substitution and rearrangement in either order accept 2, 2.2, 2.27, 2.3 for " a " throughout $(x)=\frac{v^{2}\left(-u^{2}\right)}{2 \times a}$ ignore sign accept 1460 (m) allow answers in the ranges: $1460(\mathrm{~m})$ to 1481 (m) $1520(\mathrm{~m})$ to $1530(\mathrm{~m})$ $1680(\mathrm{~m})$ to $1700(\mathrm{~m})$ award full marks for correct answer without working	$\begin{aligned} & \hline(3) \\ & \text { AO2 } \end{aligned}$		
	Answer	Additional guidance	Mark		
:---	:---	:---	:---		
3(a)(iii)	one statement from		(1)		
	take off aborted (1)				
mechanical/engine failure					
(1)					
acceleration reduced (1)					
weather related reasons (1)					
larger mass / heavier plane					
/ extra passengers (1)					
(longer runway required)					
for landing (1)				\quad	
:---	:---				
	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
3(b)(i)	selection and substitution (1) $(\mathrm{KE})=\frac{1}{2} \times 3.6 \times 10^{5} \times 71^{2}$ evaluation (1) $9.1 \times 10^{8}(\mathrm{~J})$	accept $9.07 \times 10^{8}(\mathrm{~J})$ accept 907380000 (J) award full marks for correct answer without working do not award a power of ten error	$\begin{gathered} \text { (2) } \\ \text { AO2 } \end{gathered}$		
	Answer	Additional guidance	Mark		
:---	:---	:---	:---		
3(b)(ii)	any one from:	(1)			
mechanically (to the					
thermal store) (1)					
(heating) due to air					
resistance / friction (1)					
thermally (1)				\quad allow dissipated	AO2
:---					
Question Number	Answer	Mark			
:---	:---	:---:			
Q4a)	A kg m/s \boldsymbol{B} is not correct it is mass divided by velocity \boldsymbol{C} is not correct because it is the product of mass and acceleration D is not correct because it is mass divided by acceleration	A01			
	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
4(b)(i)	a description using any four of the following points in a logical order: measure the mass / weight of the trolley(s) / weigh the trolley(s) (1) determine the speed of trolley A (1) put one light gate (connected to data logger) further down the runway than trolley A and another beyond trolley B (1) trollies A and B stick together (1) measure combined velocity / speed of A and $B(1)$ calculate momentum of trolley A before collision and A and B after collision (1) check for equality / velocity after collision is half that before collision (1) repeat and take mean / average (1)	allow determine / find / calculate use (average) speed = distance / time to calculate speed of trolley A may be shown on diagram measure distance and time in appropriate places calculate (total) momentum before and after collision (total) momentum before equals (total) momentum after	$\begin{array}{\|c\|} \hline \text { (4) } \\ \text { AO1 } \end{array}$		
	Answer	Additional guidance	Mark		
:---	:---	:---	:---		
4 (b)(ii)	\{compensating for / reducing effect of / overcoming / balancing / cancelling effect of friction OR	do not accept reducing / cancelling friction do not accept so trolley accelerates down slope	(1) so that trolley A travels at a constant speed / doesn't slow down		
	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
$\begin{aligned} & \hline 4 \\ & (c)(i) \end{aligned}$	$\begin{aligned} & \text { conversion of time to } s(1) \\ & (t=) 0.012 \text { OR } 12 \times 10^{-3} \text { OR } 1.2 \times 10^{-2} \\ & \text { substitution (1) } \\ & (F=) \frac{(0.075 \times-15.0)-(0.075 \times 8.2)}{0.012} \\ & \text { OR } \\ & (F=) \frac{(0.075 \times 15.0)-(0.075 \times-8.2)}{0.012} \\ & O R \\ & (F=) \frac{0.075 \times(15.0+8.2)}{0.012} \\ & \text { evaluation }(1) \\ & (-) 150(N) \end{aligned}$	substitution and conversion in either order ignore signs on velocity accept time to any power of ten for substitution mark $(F=) \frac{(1.125)+(0.615)}{0.012}$ 145 (N) scores 3 marks 145 (N) to any other power of ten scores 2 marks maximum 42.5 (N) scores 2 marks maximum 42.5 (N) to any other power of ten scores 1 mark maximum 93.75 (N) or 51.25(N) 1.933 scores 1 mark maximum award full marks for correct answer without working	$\begin{aligned} & \hline \text { (3) } \\ & \text { AO2 } \end{aligned}$		
$\left.\begin{array}{	l	l	l	l	}\hline & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \begin{array}{l}\text { 4 } \\ \text { (c)(ii) }\end{array} & \text { Any two from: } & \begin{array}{l}\text { no marks awarded for } \\ \text { answers in terms of energy }\end{array} & \begin{array}{l}\text { (2) } \\ \text { AO1 }\end{array} \\ & \begin{array}{ll}\text { (forces are) equal / same size (1) } \\ \text { (1) }\end{array} & \begin{array}{l}\text { (forces) act on different bodies } \\ \text { (1) }\end{array} & \begin{array}{l}\text { opposite (direction) } \\ \text { one (force) acts on racket, } \\ \text { one to the right }\end{array} \\ \text { same type of force (1) }\end{array} \quad \begin{array}{l}\text { both are contact forces } \\ \text { if no other marks awarded, }\end{array}\right]$
	Answer	Additional guidance	Mark		
:---	:---	:---	:---		
5(a)	substitution (1)	(2) number of atoms $=\frac{4.0 \times 10^{-7}}{0.15\left(\times 10^{-9}\right)}$	$\frac{4.0 \times 10^{-7}}{1.5\left(\times 10^{-10}\right)}$ AO2 evaluation (1) 2700 accept any value that rounds to 2 700 award full marks for correct answer without working		
	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
5(b)(i)	reading from graph (1) (at 5 degrees:) number between 10^{6} and 10^{7} AND (at 100 degrees:) 10^{2} evaluation (1) $\frac{\text { number between } 10^{6} \text { and } 10^{7}}{10^{2}}$ OR between $10^{4}: 1$ and $10^{5}: 1$ between $10000: 1$ and 100 000:1 OR between 10^{4} and 10^{5} between 10000 and 100000	(e.g. $10^{6.5}$) (e.g. $10^{4.5}: 1$ or $10^{7}: 10^{2}$) allow any correct ratio not in its simplest form (e.g. 104.5) award full marks for correct answer without working inverted ratio scores 1 mark maximum	$\begin{gathered} \text { (2) } \\ \text { AO2 } \end{gathered}$		
	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
5(b)(ii)	an explanation including any four from: Observations most (alpha particles) pass (straight) through the foil (with little deflection) (1) some (alpha particles) are \{scattered / deflected\} through \{small angles / less than 90 degrees (1) (very) few (alpha particles) are \{scattered / deflected\} through \{large angles / greater than 90 degrees\} (1) Conclusions atoms are mainly empty space (1) there must be a nucleus / something inside the atom (1) (nucleus / something) must be \{small / heavy / dense / concentrated / charged / positive\} (1)	Ignore electrons ignore refracted allow repelled allow rebound / reflect / back scattering / bounce back ignore electrons	(4) A01,A03		
	Answer	Additional guidance	Mark		
:---	:---	:---	:---		
5(c)(i)	A description including: roll / release / drop a marble (down the slope) (1) and one from record where the marbles go (1) OR	(2) allow alpha particle for marble recording	AO3		
measure the angle of path (1)					
	Answer	Additional guidance	Mark		
:---	:---	:---	:---		
5(c)(ii)	any one from marble / weight has no charge (1) the edge of the paper is not far enough away from the weight (1) the marble / weight is too big / small (1) there is only one marble / weight (1) it is 2 dimensional / not 3D (1) all marbles have the same speed (1) marbles (only deflect on) hitting / contact with weight (1)	(1)	A03		
Question Number	Answer	Mark			
:---	:---	---:			
$\mathbf{6 a}$	B frequency increases	A is not correct because the danger does not increase with			
decreasing frequency					
C is not correct because all waves in the e-m spectrum					
have the same velocity					
Dis not correct because all waves in the e-m spectrum					
have the same velocity			$\quad\left\{\begin{array}{l} \\		
\hline\end{array}\right.$					
Question Number	Answer	Additional guidance	Mark		
---	---	---	---	---	
6b(i)	selection and substitution (1) $\begin{aligned} & 3(.00) \times 10^{8}=2.45\left(\times 10^{9}\right) \times \lambda \\ & \text { rearrangement }(1) \\ & (\lambda=) \frac{3(.00) \times 10^{8}}{2.45\left(\times 10^{9}\right)} \\ & \text { evaluation }(1) \\ & 0.12(\mathrm{~m}) \end{aligned}$	allow substitution and rearrangement in either order $2.45\left(\times 10^{9}\right)=\frac{3(.00) \times 10^{8}}{\lambda}$ $\lambda=\frac{v}{f}$ accept 0.122 (m) power of ten error gains 2 marks award full marks for the correct answer without working	$\begin{array}{r} \text { (3) } \\ \text { AO2 } \end{array}$		
Question Number	Answer	Additional guidance	Mark		
:---:	:---:	:---:	:---:		
6b(ii)	selection and substitution (1) ```(0.)55=}\frac{42000}{\mathrm{ total energy supplied (to device)} rearrangement (1) (total energy supplied to device=)}\frac{42000}{(0.)55 evaluation (1) 76 000(J)```	allow substitution and rearrangement in either order (0.) $55=\frac{42000}{x}$ accept any value that rounds to 76 000(J) 760/764/763(J) gains 2 marks any other power of ten error gains 1 mark award full marks for the correct answer without working	$\begin{gathered} \text { (3) } \\ \text { AO2 } \end{gathered}$		
Question number	Indicative content	Mark			
:---:	:---:	:---:			
6c	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 Comparison X-rays: high frequency / short wavelength / ionising / high energy Radio waves: low frequency / long wavelength / not ionising / low energy X ray are used - in medical diagnosis, to find broken bones, damage to lungs - radiotherapy - treatment of cancer - airport security - revealing counterfeit art X-rays are emitted when electrons change energy levels because - electrons in lower energy levels can absorb energy - the electrons move to higher energy levels - when the electrons return to a lower energy level - the electrons lose energy as radiation. - the electrons need to lose a large amount of energy - (so that) they emit x-ray radiation of high energy/frequency Radio waves are used - broadcasting television - broadcasting radio - communications - satellite transmissions - mobile phones - radar	(6) AO1			
	Radio-waves are emitted when - electrons oscillate in electrical circuits oscillations are - current (flow of electrons) that continually change direction - current flows up and down in a (transmitting) aerial - alternating current (AC) - this generates radio waves in the air around the aerial - the frequency of the radio waves corresponds to the oscillation frequency N.B. No credit is given for: Electrons within an atom go through energy changes OR Radio waves are produced in electrons in circuits These phrases are in the stem of the question				
:---:	:---:	:---:			
Level	Mark	Descriptor			
:---	:---	:---			
Level 1	0	$1-2$			
Level 2	$3-4$Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and with significant gaps. (AO1)				
Level 3	$5-$Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)			Demonstrates accurate and relevant physics understanding	
:---					
throughout. Understanding of the scientific ideas, enquiry,					
techniques and procedures is detailed and fully developed.					
(AO1)					
Level	Mark	Additional Guidance	General additional guidance - the decisions within levels		
---	---	---	---	---	---
Level 1	$1-2$	e.g. - At each level as well as content, the scientific coherency of what is stated will help place the answer at the top or bottom of that level			
Elements of physics present i.e. isolated					
knowledge of principles, two					
unconnected statements				\quad	No rewardable material
:---	:---				
Levy use of radio waves					

Total for Question $6=13$

[^0]: *there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15\%). These will be identified by an asterisk in the mark scheme.

