Pearson

Mark Scheme
 (Results)

Summer 2022

Pearson Edexcel GCSE
In Chemistry (1CH0) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022

Publications Code 1CH0_1F_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3 a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3 b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15\%). These will be identified by an asterisk in the mark scheme

2206 1CHO_1F

Paper 1F Foundation Tier

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (a)}$	phosphorous (1) potassium (1)	allow phonetic spelling	(2)
AO1-1			

Question number	Answer	Mark
$\mathbf{1 (b) (\mathbf { i) }}$	Haber (1)	(1) AO1-1

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (b) (i i) ~}$	(reaction is) \{reversible / can go both ways / can go backwards and forwards\}	allow (dynamic) equilibrium ignore 'reversed' alone	(1) AO1-1

Question number	Answer	Mark	
$\mathbf{1 (b) (\text { iii) }}$	B	(1)	AO2-1
		A is incorrect as there are no shared pairs and the nitrogen atom shown only has 3 electrons \mathbf{C} is incorrect as there are no shared pairs \mathbf{D} is incorrect as the nitrogen atom shown only has 3 electrons	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (c)}$	ammonia + nitric acid (1)	allow reactants in either order if symbol equation given, formulae must be fully correct if both word and symbol equations are given, ignore symbols	(2) AO2-1

Question number	Answer	Additional guidance	Mark
2(a)	Arrangement - 1 mark max in a solid (particles are): - regularly arranged/ close(r) / in lattice / fixed (position) (1) OR in a liquid (particles are): - randomly arranged / further apart (1) Movement - 1 mark max in a solid (particles): - vibrate / do not move (around) (1) OR In a liquid (particles): - move (1)	answer for one state will be taken to imply opposite for other; but if both given, both must be correct OR one correct and one an ignore allow uniformly arranged / in a fixed shape / (tightly) packed together / in lines / in layers / in rows / ordered / organised ignore compact(ed) / attached / bonded / particles touching allow spread out / space between particles reject do not move much "They" is assumed to mean particles allow suitable diagrams allow answers in either space	(2) AO1-1

Question number	Answer	Mark
2(b)	D melting is the only correct answer	(1)
	A is not correct as condensing is gas to liquid B is not correct as evaporating is liquid to gas \mathbf{C} is not correct as freezing is liquid to solid	

Question number	Answer	Additional guidance	Mark
2(c)	melting point (too) high / (temperature) below melting point / metals have high melting point / (water is) not hot enough	allow melting point higher (than chocolate) allow not enough \{heat/ energy\} / takes a lot of \{heat / energy\} allow metallic bonds are strong / no bonds have been broken (at temperature of water) ignore any statements referring to boiling point ignore 'hard to melt'	AO3-2b

Question number	Answer	Additional guidance	Mark
$\mathbf{2 (d)}$	An explanation linking: • (when heated) changes to a solid (1)	allow it does not \{boil / form gas $\} /$ colour change (must be goes white if specified) / new substance forms ignore 'changes state' / (chemical) reaction occurs	AO2-1
	(when cooled) stays solid / doesn't change back / change is permanent / change is irreversible (1)	allow doesn't go back to liquid / cannot change back	

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array}
$$ \& Answer \& Mark

\hline \mathbf{3 (a) (\mathbf { i })} \& \mathbf{C} sedimentation filtration chlorination is the only correct answer \& (1)

A and \mathbf{B} are incorrect as sedimentation is the first step

\mathbf{D} is incorrect as chlorination is the last step\end{array}\right] .\)| AO1-1 |
| :---: |

Question number	Answer	Additional guidance	Mark
3(a)(ii)	to kill \{bacteria / microorganisms / microbes / pathogens\}	ignore germs / diseases allow viruses	(1) AO1-1
		allow 'remove' / 'get rid of' / eliminate for kill	
allow to sterilise / disinfect (the water)			

Question number	Answer	Additional guidance	Mark
3(a)(iii)	A description including: - (put waste) water in tank / left to (stand / settle) (1) - \{particles / dirt / impurities / sediment / solid\} fall to bottom (1)	allow any put in suitable large or small container e.g. container / beaker allow for MP1 add a substance that causes clumping / aluminium sulfate must have idea that particles sink reject large(r) pieces e.g- sand / rocks / branches etc that would be filtered ignore any references to filtration before or after sedimentation	$\begin{aligned} & \text { (2) } \\ & \text { AO1-1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
3(a)(iv)	an explanation linking: - (the water) contains \{chloride / fluoride, nitrate / sulfate / copper / magnesium / ions / salts \} (1) - (therefore) more than just water (molecules) / it does not contain just water / which are impurities / pure substances contain only one substance / pure water does not contain ions (1)	allow chemicals / minerals / substances ignore particles / metals / elements / molecules / things allow pure water is just $\mathrm{H}_{2} \mathrm{O}$ / contains hydrogen and oxygen only reject pure substances contain only one element allow pure water does not contain any of \{ions in the table / these ions / specifically named ions from table\} for 2 marks	(2) AO3 2a-1 2b-1
Question number	Answer	Additional guidance	Mark
3(b)(i)	(delivery) tube	allow \{glass / rubber / plastic\} tube	$\begin{aligned} & \hline \text { (1) } \\ & \text { AO2-1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
3(b)(ii)	an explanation linking: add bung / cork (to top of flask) (1)	(2) ignore seal / block / lid / cover etc allow stopper allow incorrect naming of flask 3b	
	(so) \{water / vapour / gas / steam\} cannot escape (from top of flask) / will go into \{(delivery) tube/ X\} (1)	ignore 'so water is collected' allow incorrect naming of delivery tube mark independently for max 1 allow replacement of X with a (Liebig) condenser / cooling of delivery tube / ice bath around test tube (1)	

Question number	Answer	Additional guidance	Mark
4(a)	so the student knows where to slow the flow (of acid) on the second and third attempt / so that the student has an \{estimate / idea\} of the volume (of acid needed)	ignore to make it more accurate / to see if method works ignore to make it a fair test ignore as a practice run allow \{how much / amount $\}$ for volume	(1) AO1-2

Question number	Answer	Mark
$\mathbf{4 (b)}$	B $\quad 27.60$ is the only correct answer A is incorrect as this is the initial reading on the burette C is incorrect as this is the final reading on the burette D is incorrect as the values have been added rather than subtracted	(1)
AO2-1		

Question number	Answer	Additional guidance	Mark
4(c)	a description including any four from:	(4)	AO1-1
	- read the (initial) volume on the burette (1)		
	- swen the tap / add acid to \{alkali/flask\} (1)	allow initial burette reading allow add HCl to LiOH allow open tap ignore dropwise / drop by drop	
	- until end point / until indicator changes colour (1) (close tap then) read (final) volume of acid in burette (1)	allow any change of colour given	

Question number	Answer		Mark
4(d)	C methyl orange is the only correct answer A is incorrect as it tests for carbon dioxide/not an acid-alkali indicator. B is incorrect as no distinct/discrete change of colour D is incorrect as the colour change is not clear enough		$\begin{aligned} & \hline(3) \\ & \text { AO2-2 } \end{aligned}$
Question number	Answer	Additional guidance	Mark
4(e)	an explanation linking: - neutralisation reaction (1) - $\left\{\right.$ hydrogen ions $/ \mathrm{H}^{+}$) react with $\left\{\right.$hydroxide ions $\left./ \mathrm{OH}^{-}\right\}$(1) - to form water (1)	allow reaction between an acid and a \{base/alkali\} allow acid + alkali (1) \rightarrow salt + water (1) $\mathrm{H}^{+}+\mathrm{OH}^{-}(1) \rightarrow \mathrm{H}_{2} \mathrm{O}^{(1)}$	$\begin{aligned} & \hline(3) \\ & \text { AO2-1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
5(a)	$\begin{aligned} & \text { number of electrons }=13(1) \\ & \text { number of neutrons }=14(1) \\ & \text { number of protons }=13(1) \end{aligned}$	allow 27-13 (=14)	(3) A01-1
Question number	Answer	Additional guidance	Mark
5(b)	```fractions \(\frac{1.35}{27}\) and \(\frac{12.00}{80}\) \\ ratios derived from two fractions into simplest whole number ratio \(\begin{array}{cc}(0.05 & 0.15) \\ 1 & 3\end{array}\) \\ (1)``` whole number ratio to formula AlBr_{3} (1)	answer with no working scores 0 MP2 depends fractions being shown to give ratio allow ECF for MP2 and MP3 inverted fractions correctly followed through to $\mathrm{Al}_{3} \mathrm{Br}$ scores 2 allow $\mathrm{Al}_{1} \mathrm{Br}_{3}$ allow errors in case or using superscript e.g. albr ${ }^{3}$	$\begin{align*} & \hline(3) \\ & \text { AO2-1 } \tag{1} \end{align*}$
Question number	Answer		Mark
5(c)(i)	$\begin{aligned} & \text { group }=3 \\ & \text { period }=4 \end{aligned}$		(2) AO3- 1a-1 1b-1

Question number	Answer	Additional guidance	Mark
5(c)(ii)	A description including: - compared to the elements in same \{group / period\} (1) - (and used the) \{trend/pattern\} going \{down the group / across a period\} (1)	MP1 is for idea of which other elements to consider allow elements \{above and below / to left and right / around\} reference to reactivity can score MP2 but not MP1 e.g elements get more reactive down the group (1) reject incorrect alternatives to 'element' (allow 'metals') but mark on MP2 is for idea of how properties predicted from elements selected in MP1 allow \{'averaged' / value between\} surrounding elements reject compare Ga with elements with similar properties/ reactions	$\begin{aligned} & \text { (2) } \\ & \text { AO1-1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
6(a)	12.56 with or without working scores 2 $\begin{aligned} & \frac{3.14}{250}(1)(=0.01256) \\ & 0.01256 \times 1000(1)(=12.56) \end{aligned}$ OR $\begin{array}{ll} \frac{250}{1000} & (1)(=0.250) \\ \frac{3.14}{0.250} & (1) \quad(=12.56) \end{array}$	$0.01256 / 0.0126 / 0.013 \text { scores } 1$ ECF for MP2 final answer of: 12.6 scores 2 13 with working scores 2 200.96 scores 1 0.0796 scores 1 2.0096×10^{-4} scores 1 2.0096×10^{-7} scores 0	$\begin{aligned} & \hline(2) \\ & \text { AO2-1 } \\ & \hline \end{aligned}$
Question number	Answer	Additional guidance	Mark
6(b)(i)	solid (forms) / (goes) cloudy / \{solution/ liquid/ mixture\} will go colourless	ignore crystals ignore any colour given for solid ignore liquid changes colour / colour change ignore precipitate reject any answer including fizzing/ bubbles/ effervescence	$\begin{aligned} & \hline \text { (1) } \\ & \text { AO2-2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (b) (i i)}$	$2 \mathrm{NaOH}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$	reject answer if numbers before any other substance	(1) AO2-1

Question number	Answer	Additional guidance	Mark
6(b)(iii)	A description to include: - filter (1) - (residue is) rinsed / washed / has distilled water added (1) - leave in warm place / put in oven (1)	if heating with Bunsen to evaporate all water before filtration, score 0 for whole answer if heating to warm reaction mixture ignore if no filtering score 0 marks for whole answer allow leave for water to evaporate / pat dry (with filter paper/ paper towel) / leave on windowsill allow heat (with Bunsen) ignore just 'leave' / leave to dry ignore 'crystallisation'	$\begin{aligned} & \hline(3) \\ & \text { AO2-2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
6(c)(i)	H^{+}and Na^{+}only circled		(1) AO1-1

Question number	Answer	Additional guidance	Mark
6(c)(ii)	so that they do not react (with the electrolyte/sodium sulfate solution / products formed)	allow graphite is unreactive allow so they do not corrode	(1) AO1-1

Question number	Answer	Additional guidance	Mark
(c)(iii)	An explanation linking:		(2) AO1-1 ignore 'charged particles' for MP1 but allow for MP2 reject ions for MP1 and MP2 'electrons in bonds/ electrons in outer shell' scores MP1 only
	- move (through graphite) / are \{delocalised / free / sea of electrons\} (1)	MP2 depends on electrons or charged particles being mentioned ignore any other material about structure of graphite, correct or otherwise	

Question number	Answer	Mark
$\mathbf{7 (a) (i)}$	C it is oxidised is the only correct answer A, B and \mathbf{D} are not correct as the reaction of iron with oxygen is an oxidation reaction	(1) AO1-1
Question number Answer Mark $\mathbf{7 (b) (i)}$ Volume of gas in Figure X in cm^{3} 50	Volume of gas in Figure Y in cm^{3} 45 AO3-1b	

Question number	Answer	Additional guidance	Mark
7(b)(ii)	$10(\%)$ scores 3 with or without working	allow ECF from (b)(i)	$\mathbf{(3)}$ AO3 $\mathbf{2 a - 1}$ $\mathbf{2 b - 2}$
	$50-45(1)(=5)$ $50(1)(=0.1)$ $0.1 \times 100(1)(=10 \%)$		

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (b) (\text { iii) }}$	incomplete reaction / has not been left long enough / insufficient iron	allow iron has fully reacted / no more iron to react allow there was an excess of oxygen allow oxygen cannot reach all of the iron	(1) A03 $\mathbf{2 b - \mathbf { 1 }}$

Question number	Indicative content	Mark
*7(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (6 marks) - in an alloy another metal is added / a mixture of metals - in a pure metal, all atoms are of the same size - layers of atoms can slide over one another easily - so a pure metal is malleable / soft - alloys are stronger - because atoms of different sizes - disrupt layers of atoms in the alloy - layers cannot slide - alloys can be used e.g. in metal beams / airplanes parts / bridges - because the alloy is stronger than the pure metal - electroplating means that a (corrosion resistant) metal \{coating / layer\} is added on top of the (pure) metal / alloy - (more reactive) metals can corrode when exposed to air and water - (corrosion resistant) metal coating does not react with oxygen in air - therefore pure metal object does not corrode - object remains shiny - object looks more attractive - base metal is often cheaper e.g. copper plated with gold in jewellery - therefore object may be cheaper - electroplating involves creating a circuit - object to be plated is made the cathode - plating metal is the anode - electrolyte made from plating metal salt solution	(6)

Level	Mark	Descriptor	Possible candidate response
Read whole answer. Ignore all incorrect material and discard any contradictory material.			
	0	No rewardable material.	
Level 1	1-2	Candidate gives basic ideas about the uses of structure of alloys or electroplated materials: OR	Possible candidate responses alloys can be used for car parts (1) alloys are stronger than pure metals and cutlery is electroplated (2)
Level 2	3-4	Candidate gives basic ideas about both processes: OR Candidate gives a detailed explanation about one processes:	Possible candidate responses alloys make items stronger because the layers of atoms cannot slide, electroplating helps prevent items corroding (3) electroplating is used to coat cheaper metals in more expensive metals to make them look shiny, alloys are a mixture of metals they are more resistant to corrosion (4) alloys used in construction means that they are stronger as different sized atoms in the structure disrupt the layers of atoms so that they can no longer slide so that the metal is now stronger (4) Cutlery can be electroplated with a less corrosive metal so that the metal remains shiny, the layer of metal stops the iron coming into contact with oxygen and water so that it does not rust (4)
Level 3	5-6	Candidate explains ideas about both processes:	Possible candidate responses alloys used in construction means that they are stronger as different sized atoms in the structure disrupt the layers of atoms so that they can no longer slide so that the metal is now stronger. Electroplating coats a cheaper metal in an expensive metal (5) Cutlery can be electroplated with a less corrosive metal so that the metal remains shiny, the layer of metal stops the iron coming into contact with oxygen and water so that it does not rust. Alloys can be used in car parts and in metal beams for construction as it makes them stronger (6)

Question number	Answer	Mark
$\mathbf{8 (a)}$	A solid aqueous aqueous liquid is the only correct answer B is incorrect because hydrochloric acid is aqueous \mathbf{C} and \mathbf{D} are incorrect as barium hydroxide is a solid	(1)
AO1-1		

| Question
 number | Answer | |
| :--- | :--- | :--- | :--- |
| 8(b)(i) | burette / (volumetric/graduated) pipette | allow syringe
 ignore any form of measuring cylinder / volumetric flask /
 dropping pipette |

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| 8(b)(ii) | A description to include
 (observe / look at) colour produced on (universal
 indicator) paper (1) | (2)
 allow (paper/solution/mixture) changes colour / specific
 ignore incorrect linking colour to acidity |
| | \bullet compare to pH \{chart / scale\} (1) | |

Question number	Answer	Additional guidance	Mark
8(b)(iii)	An explanation linking - litmus paper only shows if the solution is \{acidic / alkaline\} (1) - does not show how acidic or alkaline the solution is (1)	allow litmus goes red in acid, blue in alkali / litmus only has 2 colours / only UI gives a wide range of colours / litmus paper does not have a gradual change in colour ignore references to purple and neutral ignore litmus is not \{precise / accurate\} allow does not give the $\mathrm{pH} /$ litmus does not give accurate pH allow litmus paper does not show a gradual change in $\mathbf{p H} /$ ORA allow litmus does not give 'strength' of acid/alkali allow litmus paper is qualitative not quantitative (1) reject answers referring to use in test for chlorine	$\begin{aligned} & \text { (2) } \\ & \text { AO3 } \\ & 2 a \\ & 2 b \end{aligned}$

Question number	Answer	Additional Guidance	Mark
8(b)(iv)	- linear scales on both axes (1) - \{plotted points / best fit line\} must cover at least half graph paper in both directions (1) - 7 or more points plotted correctly (\pm half a square) (1)	axes must be numbered (pH can start at 1) allow MP2 and MP3 if axes reversed must have numbered scale to score MP3 allow MP1 only for bar chart / histogram reject plotting on scale that uses the values from the table on Y axis (1, 1, 1, 1, 2, 7, 12, 13, 13)	$\begin{aligned} & \text { (3) } \\ & \text { AO2-1 } \end{aligned}$

Question number	Answer	Mark
$\mathbf{8 (c) (i)}$	B health hazard is the only correct answer A, \mathbf{C} and \mathbf{D} are incorrect as this is the symbol for a health hazard	AO1-1

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (c) (i i) ~}$	(safety) goggles / gloves	allow safety glasses / eye protection	(1)
		ignore glasses and all other suggestions	AO1-1

Question number	Answer	Mark
$\mathbf{9 (a) (\mathbf { i })}$	B 2.8 is the only correct answer (1) \mathbf{A} is incorrect as there are too few electrons \mathbf{C} and \mathbf{D} are incorrect as there are too many electrons	AO1-1

Question number	Answer	Additional guidance	Mark
9(a)(ii)	An explanation linking - ions (in magnesium carbonate) \{cannot move / in a fixed position / held in a lattice / held together by strong electrostatic forces\} (1) - magnesium contains \{delocalised/free\} electrons (1) - electrons (in magnesium) can \{flow / move \} / are mobile (1)	ignore charged particles throughout allow magnesium carbonate does not have \{delocalised / free\} electrons reject references to covalent bonding in magnesium carbonate for MP1 allow sea of electrons ignore ions in magnesium ignore carry a \{charge / current\}	$\begin{aligned} & \text { (3) } \\ & \text { AO2-1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
9(b)	$\begin{aligned} & \text { MP1 - relative formula mass } \mathrm{MgCO}_{3} \\ & 24.0+12.0+3 \times 16.0(1)(=84.0) \\ & \text { MP2 - division } \\ & \underline{24(.0)}(1)(=0.28571429) \end{aligned}$ MP3 - conversion to percentage $(0.28571429) \times 100$ $(=28.57 / 28.6 / 29)$	28.57 / 28.6 / 29 with or without working gains 3 marks. allow ECF for MP2 and MP3 must have 2 or more sig figs for MP2 $\begin{aligned} \text { e.g } \mathrm{Mr} & =52(0) \\ \frac{24}{52} & =0.4615(1) \\ \times 100 & =46.2(1) \end{aligned}$ MP3 - $x 100$ mark only if using all 3 pieces of data in calculation allow any number of sig figs except 1 correctly rounded allow $\frac{84(.0)}{24(0)} \times 100=350(2)$	$\begin{aligned} & \hline(3) \\ & \text { AO2-1 } \end{aligned}$

Question number	Indicative content	Mark
*9(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (3 marks) AO3 (3 marks) magnesium carbonate - bubbles / fizzing / effervescence - magnesium carbonate gets smaller / disappears (allow 'dissolves') - metal carbonate + acid \rightarrow metal salt + carbon dioxide + water - magnesium carbonate + sulfuric acid \rightarrow magnesium sulfate + carbon dioxide + water - therefore, gas is carbon dioxide - test using limewater - limewater will turn cloudy magnesium - bubbles / fizzing / effervescence - metal gets smaller / disappears (allow 'dissolves') - gas is hydrogen - metal + acid \rightarrow salt + hydrogen - test gas with a lit splint - (lit splint) burns with a squeaky pop - magnesium + sulfuric acid \rightarrow magnesium sulfate + hydrogen Credit symbol equations. Incorrect/ incomplete equations could be partially credited for identifying product(s).	$\begin{aligned} & \text { (6) } \\ & \text { A01 } \\ & \text { A03 } \end{aligned}$

Level	Mark	Descriptor
	0	• \quad No rewardable material.
Level 1	$1-2$	- Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) - Analyses the scientific information but understanding and connections are flawed. (AO3)
Level 2	$3-4$	- Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1)
- Analyses the scientific information and provides some logical connections between scientific enquiry, techniques and procedures. (AO3)		

Level	Mark	Descriptor	Possible candidate response
Read whole answer. Ignore all incorrect material and discard any contradictory material.			

	equation for one and observations, gas produces test or word equation for the other with limew	produces carbon dioxide because it is a carbonate, so test the carbon dioxide with limewater and the limewater will turn cloudy (6)	
Question number	Answer	Additional guidance	Mark
10(a)(i)	Actual yield - \{mass/amount/yield\} (of product) formed in the \{reaction / experiment\} (1) Theoretical yield - calculated \{mass/amount/yield\} of product formed (using the balanced equation) / \{mass/amount/yield\} of product formed if all reactant used to form product only with no losses (1)	allow how much (product) formed ignore 'actual' allow maximum \{mass / amount/yield\} of product that could be formed (with no losses) ignore estimated / predicted / expected mass formed ignore what would form theoretically	$\begin{aligned} & \text { (2) } \\ & \text { AO1-1 } \end{aligned}$
Question number	Answer	Additional guidance	Mark
10(a)(ii)	$\begin{aligned} & \frac{8.07}{53.80}(1)(=0.15) \\ & 0.15 \times 100(1) \quad(=15) \end{aligned}$	award correct answer of 15(\%) with or without working (2) allow $\frac{53.80}{8.07} \times 100 / 666.7 / 667 / 666.6$ for 1 mark	(2) AO31a
Question number	Answer	Additional guidance	Mark
10(a)(iii)	Any two from: - Some reactant remained unreacted (1) - Some product is lost during \{the reaction /processes/extraction/purification\} (1) - Side reactions occur (1)	allow reaction not left long enough allow above 15\% ethanol, enzymes in yeast denature allow oxidation of ethanol ignore reactants are lost in experiment ignore yield is lost / loss of yield do not allow self-deprecating answers allow impurities in the reactants ignore reversible reaction	$\begin{aligned} & \text { (2) } \\ & \text { AO1-1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
10(b)(i)	$\begin{aligned} & 342+18=360 / 4 \times 46+4 \times 44=360 \\ & \text { and } \\ & 4 \times 46(1)(=184) \\ & \frac{(4 \times 46)}{360} \times 100 \quad \text { (1) }(=51.111 \ldots) \\ & 51(\%)(\text { to } 2 \text { sig figs) (1) } \end{aligned}$	award full marks for 51 with or without working 0.5111 scores 1 mark 12.8 or 12.78 or 12.778 scores 1 mark 13 scores 2 51.1 / 51.11 (or more sig figs) scores 2 marks 25.555 scores 1 26 scores 2 marks sig fig mark can still be awarded if answer from an incorrect calculation has been given to 2 sig figs if using numbers from question	$\begin{aligned} & \hline(3) \\ & \text { AO2-1 } \end{aligned}$

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 (b) (i i)}$ | An explanation linking | Mark |
| | carbon dioxide becomes \{useful/a desired product /no
 longer a waste product\} (1) | |
| | (2) | |
| | so atom economy increases (to 100\%) (1) | |

