$A Q A B$

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: TRILOGY

Higher Tier
Physics Paper 1H
Wednesday 23 May 2018 Afternoon Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	

Information

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0	1	Figure 1 shows two models of the atom.

Figure 1

Plum pudding model

Nuclear model

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

Choose the answers from the box.

atom	electron	nucleus
neutron	orbit	proton

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Explain why the total positive charge in every atom of an element is always the same. |
| :--- | :--- | :--- | [2 marks]

\qquad
\qquad
\qquad
\qquad

Alpha particles were fired at a thin film of gold at a speed of 7% of the speed of light.
Determine the speed of the alpha particles.
Speed of light $=300000000 \mathrm{~m} / \mathrm{s}$
\qquad
\qquad
Speed $=$ \qquad m / s

0	1	4	Figure 2 shows two atoms represented as solid spheres.

Figure 2

Hydrogen

A hydrogen atom has a radius of $2.5 \times 10^{-11} \mathrm{~m}$
Determine the radius of a magnesium atom.
Use measurements from Figure 2
\qquad
\qquad
Radius $=$ \qquad m

02 A student wanted to determine the density of the irregular shaped object shown in Figure 3

Figure 3

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ Plan an experiment that would allow the student to determine the density |
| :--- | :--- | :--- | of the object.

\qquad

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Another student did a similar experiment.

He determined the density of five common plastic materials.
Table 1 shows the results.
Table 1

Plastic material	Density in $\mathbf{~ k g} / \mathbf{m}^{3}$
Acrylic	1200
Nylon	1000
Polyester	1380
Polystyrene	1040
PVC	1100

Figure 4 shows the results plotted in a bar chart.
Figure 4

Complete Figure 4

You should:

- Write the correct scale on the y-axis.
- Draw the bars for polyester, polystyrene and PVC.

The student determined the density of the material three times.
Table 2 shows the results.

Table 2

	Density in $\mathbf{~ k g} / \mathbf{m}^{3}$
1	960
2	1120
3	1040

Determine the uncertainty in the student's results.
\qquad
\qquad
Uncertainty = \qquad $\mathrm{kg} / \mathrm{m}^{3}$

0	3	Figure 5 shows a diver.

The diver is using a canister of compressed air so that he can breathe underwater.
Figure 5

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ Which two sentences describe the movement of the air particles in the canister?

[2 marks]
Tick two boxes.

They vibrate about a fixed position.

They move in random directions.

The motion of all the particles is predictable.

They move with a range of different speeds.

They move in circular paths.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ The temperature of the air inside the canister increases. |
| :--- | :--- | :--- | :--- |

What happens to the movement of the air particles?
\qquad

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ It could be dangerous if the temperature of the air inside the canister increased by a |
| :--- | :--- | :--- | :--- | large amount.

Explain why.
\qquad
\qquad
\qquad
\qquad

A canister of air was tested to find out how the pressure changed when it was used by a diver.

- Air was allowed to escape from the canister.
- The pressure of the air in the canister was recorded every 5 minutes for 80 minutes.

Figure 6 shows the results.
Figure 6

0	3	4

Use Figure 6

Atmospheric pressure $=$ \qquad MPa

0	3	5
Divers can safely stay underwater until the pressure of the air in the canister has		

Determine the maximum time the diver can safely stay underwater.
Use Figure 6
\qquad
\qquad
Time $=$ \qquad minutes

| $\mathbf{0}$ | $\mathbf{3}$. | 6 |
| :--- | :--- | :--- | What happens to the volume of the air when it is released from the canister?

Turn over for the next question

$\mathbf{0}$	$\mathbf{4} \quad$ The Chernobyl disaster was a nuclear accident that happened in 1986

Radioactive isotopes were released into the environment.
The radioactive isotopes emitted alpha, beta and gamma radiation.

| 0 | 4 | 1 |
| :--- | :--- | :--- | What is an alpha particle?

Tick one box.

2 charged particles and 2 neutral particles.

2 charged particles and 4 neutral particles. \square

4 charged particles and 2 neutral particles.

4 charged particles and 4 neutral particles.

| $\mathbf{0}$ | $\mathbf{4}$ |
| :--- | :--- | :--- |
| $\mathbf{2}$ Which statement about beta radiation is true? | |

Tick one box.

It is the fastest moving type of radiation.

It is the type of radiation with a negative charge.

It is the type of radiation with the greatest mass.

It is the type of radiation with the greatest range in air.

0	$\mathbf{4}$	$\mathbf{3}$ Which statement about gamma radiation is true?

Tick one box.

It is a low frequency electromagnetic wave.

It causes the charge of the nucleus to change.

\square

It causes the mass of the nucleus to change. \square
It has a very long range in air. \square

Question 4 continues on the next page

Table 3 shows the half-lives of two of the radioactive isotopes that
environment.
Table 3

Isotope	Half-life
Caesium-137	30 years
lodine-131	8 days

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{4}$	A soil sample was taken from the area around Chernobyl in 1986

The soil sample was contaminated with equal amounts of caesium-137 and iodine-131

Explain how the risk linked to each isotope has changed between 1986 and 2018 Both isotopes emit the same type of radiation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	4	5
5		

\qquad
\qquad
\qquad
Year $=$ \qquad

0	5	Figure 7 shows cavity wall insulation being installed in the wall of a house.

Figure 7

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Explain how the wall reduces unwanted energy transfers.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 continues on the next page

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{2}$ |
| :--- | :--- | :--- | The cavity insulation was tested.

- The heating inside the house was switched off.
- The temperature inside the house was measured every 20 minutes for 2 hours.

Table 4 shows the results.
Table 4

Time in minutes	Temperature in ${ }^{\circ} \mathbf{C}$
0	25.0
20	20.8
40	17.4
60	14.5
80	12.1
100	10.0
120	8.4

Determine the temperature inside the house after 30 minutes.
\qquad
\qquad
\qquad
\qquad
Temperature $=$ \qquad ${ }^{\circ} \mathrm{C}$

0	5	3

Figure 8

Describe how different energy stores are changed by the boiler.
\qquad
\qquad
\qquad
\qquad

Calculate the power of the boiler.
Write any equation that you use.
\qquad
\qquad
\qquad
Power = \qquad W

Turn over for the next question

| 0 | 6 |
| :--- | :--- | A student built a circuit using filament lamps.

$\mathbf{0}$	$\mathbf{6} .1$	Sketch a current potential difference graph for a filament lamp on Figure 9

Figure 9

Potential difference

Figure 10 shows the circuit with two identical filament lamps.
Figure 10

0	6.	2
Compare the currents I_{1}, I_{2} and I_{3}		

\qquad
\qquad
\qquad

Question 6 continues on the next page

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{3}$ Calculate the charge that flows through the cell in 1 minute.

Each filament lamp has a power of 3 W and a resistance of 12Ω
Write any equations that you use.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Charge $=$ \qquad
Unit $=$ \qquad

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{4}$	The student builds a different circuit.

Figure 11 shows the circuit.
Figure 11

Explain how the readings on both meters change when the environmental conditions change.
\qquad

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

