GCSE
 COMBINED SCIENCE: TRILOGY

Foundation Tier Paper 6: Physics 2F

Specimen 2018

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a calculator
- the Physics Equation Sheet (enclosed).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 70 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions 02.3 and 06.6 you need make to sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

- In all calculations, show clearly how you work out your answer.

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname

Forename(s) \square

Candidate signature \qquad

0	1	Figure 1 shows the forces acting on a car moving at a constant speed.

Figure 1

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	Which force would have to increase to make the car accelerate?

Tick one box.
A
B
C
D \square

0	$\mathbf{1}$	$\mathbf{2}$ The car travels a distance of 2040 metres in 2 minutes.

Use the following equation to calculate the mean speed of the car.
mean speed $=\frac{\text { distance }}{\text { time }}$

0	1	3	The car makes an emergency stop.

Figure 2 shows the thinking distance and braking distance of the car.

Figure 2

What is the stopping distance?
[1 mark]

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{4}$ The person driving the car is tired.

What effect will this have on the thinking distance and braking distance?
Tick one box for thinking distance.
Tick one box for braking distance.

	decreases	increases	stays the same

Turn over for the next question

0	2	A newtonmeter measures the weight of objects.

Look at Figure 3.

Figure 3

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ What is the weight of the object in Figure 3?

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ The spring inside the newtonmeter behaves elastically. |
| :--- | :--- | :--- | :--- |

What happens to the length of the spring when the object is removed from the newtonmeter?

Tick one box.

The spring gets longer

The spring gets shorter
The spring stays the same length \square

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ A student carried out a practical to investigate the extension of a spring. |
| :--- | :--- | :--- | Write a method the student could have used.

| $\mathbf{0}$ | $\mathbf{2}$. $\mathbf{4}$ What could be done to improve the accuracy in this investigation? |
| :--- | :--- | :--- | Tick two boxes.

Use a pointer from the spring to measure the length.
Use a stronger spring in the practical. \square
Use a new spring between each reading.
Make sure the spring is stationary before measuring length.
Use a longer rule when measuring length. \square

The student added weights to a spring and measured the extension of the spring.
Figure 4 shows his results.

Figure 4

$\mathbf{0}$	$\mathbf{2} .5$	$\mathbf{5}$ What is the relationship between force applied and extension?

Tick one box.
Extension is inversely proportional to force \square
Extension increases by smaller values as force increases \square
Extension is directly proportional to force \square

| 0 | 2 | 6 |
| :--- | :--- | :--- | Use Figure $\mathbf{4}$ to determine the additional force needed to increase the extension in the spring from 5.0 cm to 7.0 cm .

0	2	7

Table 1

Force applied in \mathbf{N}	Extension in $\mathbf{~ m}$
0.0	0.000
0.5	0.025
1.0	0.050
1.5	0.075

What would the extension be with a force of 2.0 N ?
Tick one box.
0.080 m \square
0.090 m

0.095 m

0.100 m

0	2	8	The spring constant for the spring in Table $\mathbf{1}$ is $20 \mathrm{~N} / \mathrm{m}$.

Calculate the work done in stretching the spring until the extension of the spring is 0.050m

Use the correct equation from the Physics Equation Sheet.

| 0 | 3 | A student investigated the force needed to raise a mass through different liquids at a |
| :--- | :--- | :--- | constant speed.

She set up the apparatus shown in Figure 5.
Figure 5

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	In the investigation there are several variables.

Draw one line from each variable to the correct description for this investigation.
[3 marks]

Variable

Description

Distance the mass was lifted
Control
Value of force on the newtonmeter
Dependent

```
Mass
```

Independent

Type of liquid

Table 2 shows the student's results.

Table 2

Liquid	Force in $\mathbf{~ N}$
Water	10.0
Washing up liquid	11.1
Glycerol	11.5
Syrup	13.8

$\mathbf{0}$	$\mathbf{3} .2$	$\mathbf{2}$ What was the resolution of the newtonmeter?

Tick one box.
0.1 N

0.5 N

1 N \square
10 N \square

Question 3 continues on the next page

| 0 | $\mathbf{3}$ | $\mathbf{3}$ The student wanted to display her results. |
| :--- | :--- | :--- | :--- |

How should she display her results?
Tick one box.

A bar chart \square
A line graph \square
A pie chart \square

0	3	$\mathbf{4}$	Give a reason for your answer to part 03.3.

Use the following equation to calculate the work done in lifting the mass.
Work done $=$ force \times distance
Choose the correct unit from the box.

\mathbf{J}	m / s	N

Work done $=$
Unit =

| 0 | 4 |
| :--- | :--- |\quad A magnetic toy uses ring-shaped magnets.

Look at Figure 6.

The magnets can move up and down the rod. Ring magnet \mathbf{B} appears to float.

Figure 6

Label the magnetic poles on ring magnet B.
[1 mark]

| 0 | 4 | 2 |
| :--- | :--- | :--- | What would happen if ring magnet \mathbf{B} was turned upside down?

Figure 7 shows four plotting compasses arranged around a wire.
The needle of a compass is a magnet.

Figure 7

$\mathbf{0}$	$\mathbf{4}$	\mathbf{l}	$\mathbf{3}$

Explain why the compass needles all point in the same direction.
\qquad
\qquad
\qquad
\qquad

Figure 8 shows the switch closed.

Figure 8

0	4	4

The compass needles change direction.
On Figure 8 draw arrowheads on the three incomplete compass needles to show their direction.
[1 mark]

0	4	5
What would happen to the direction of the compass needles if the current was		

[1 mark]

Figure 9 shows a coil of wire in a circuit.

Figure 9

0	4	6	On Figure 9 draw the magnetic field due to the current in the coil.

Turn over for the next question

0	5	An actor is attached to a wire so that she can hang above the stage.

Look at Figure 10.

Figure 10

0	5	2	Which two forces are acting on the actor?

Tick two boxes.
Air resistance force \square
Electrostatic force \square
Gravitational force \square
Magnetic force \square
Tension force \square

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{3}$ The actor hangs above the stage in a stationary position. l . ${ }^{2}$.

What is the resultant force on the actor?

| 0 | 5 | $\mathbf{4}$ |
| :--- | :--- | :--- | The actor has a mass of 70 kg .

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Use the following equation to calculate the weight of the actor.
Weight $=$ mass \times gravitational field strength
Give your answer to 2 significant figures.

Weight of actor $=$ N

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ A motor pulls vertically upwards on the wire with a force of 720 N. |
| :--- | :--- | :--- | :--- |

Calculate the resultant force on the actor.

Another actor has a mass of 65 kg .
This actor is attached to the wire and the motor pulls her vertically upwards.
The resultant force on the actor is 25 N .

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{6}$ Write down the equation that links acceleration, mass and resultant force. |
| :--- | :--- | :--- | :--- |

Equation

0	5	7	Calculate the acceleration of the actor.

Turn over for the next question

0	6	Four students tested their reaction times using a computer program.

When a green light appeared on the screen the students had to press a key.
Table 3 shows their results.

Table 3

Student	Reaction time in s		Mean reaction time in s	
	Test 1	Test 2		0.27
Boy 1	0.28	0.27	0.26	0.25
Boy 2	0.28	0.47	0.22	0.29
Girl 1	0.31	0.29	0.27	0.30
Girl 2	0.32	0.30	0.29	

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{1}$

0	6	2

Suggest a reason why.

| 0 | 6 | $\mathbf{3}$ Give one conclusion that can be made from the results in Table 3. |
| :--- | :--- | :--- | :--- |

0	6	4
4	Suggest further evidence that you could collect to support your conclusion.	

Reaction time is important at the start of a race.
Table 4 shows the time taken by a boy to run different distances.

Table 4

Distance in \mathbf{m}	Time in s
100	12.74
200	25.63
800	139.46

0	6	5

Explain why.
[2 marks]
\qquad
\qquad
\qquad 0
\qquad

Question 6 continues on the next page

Two girls, A and B, ran an 800 m race.
Figure 11 shows how the distance changed with time.

Figure 11

 Include data from Figure 11.

Turn over for the next question

| 0 | 7 | A baby monitor has a sensor unit that transmits an image of the baby and the noises |
| :--- | :--- | :--- | the baby makes to a monitor unit.

The monitor unit then displays an image of the baby and emits the noises the baby makes.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{1}$ | Compare the properties of the waves that transmit images and noises from the |
| :--- | :--- | :--- | :--- | monitor unit.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{2}$ The sensor unit can detect infrared and visible light. |
| :--- | :--- | :--- | :--- |

Suggest one advantage of being able to detect infrared.

[1 mark]
Equation

| $\mathbf{0}$ | $\mathbf{7} .4$ | The signals for the monitor unit are transmitted as electromagnetic waves with a |
| :--- | :--- | :--- | wavelength of 0.125 m .

Wave speed of electromagnetic waves $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Calculate the frequency of the signal.
\qquad
\qquad
\qquad
\qquad

There are no questions printed on this page

Copyright information

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

