AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

COMBINED SCIENCE: TRILOGY

Foundation Tier
 Physics Paper 1F

Wednesday 23 May 2018 Afternoon Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Information

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$.
$\mathbf{1}$ Which two energy resources are renewable?	

Tick two boxes.

Biofuel

Gas

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$ Some non-renewable energy resources are more reliable than others.

Which statement correctly describes a reliable resource?
Tick one box.

It does not burn fuel. \square
It is predictable.

It will never run out.

It is cheap to use. \square

0	1	3	Figure 1 shows a wind farm.

Figure 1

The total power output of the wind farm is 19.6 MW
All of the wind turbines have the same power output.
What is the power output of one wind turbine?
Tick one box.
2.7 MW

2.8 MW

2.9 MW

3.2 MW

3.3 MW

$\begin{array}{lllll}0 & \mathbf{1} & .4 & \text { Give two reasons why people might not like having wind turbines near their homes. }\end{array}$
[2 marks]

1 \qquad
2 \qquad

| $\mathbf{0}$ | $\mathbf{1}$ | .5 | Figure $\mathbf{2}$ shows the electricity generated by different energy resources in the UK. |
| :--- | :--- | :--- | :--- | The total amount of electricity generated was the same in 2014 and in 2015

Figure 2

2014

2015

There are changes in the amounts of different energy resources used between 2014 and 2015

Explain the environmental impacts of the changes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ Figure 3 shows a mobile phone being recharged by a portable power source. |
| :--- | :--- | :--- |

Figure 3

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ Why does the battery in the phone need recharging? |
| :--- | :--- | :--- | :--- |

Tick one box.

The store of chemical energy in the battery has reduced.

The store of thermal energy in the battery has reduced.
\square
\square
The store of kinetic energy in the battery has reduced. \square
The store of gravitational energy in the battery has reduced. \square

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ The power source provides a current of 1.86 A at a potential difference of 3.90 V,

Calculate the power of the power source.
Use the equation:
power $=$ potential difference \times current
Choose the correct unit from the box.

C	J	W

\qquad
\qquad
\qquad
Power = \qquad
Unit \qquad

| 0 | 2. | 3 |
| :--- | :--- | :--- | A student needs a new power source.

Figure 4 shows three different sized power sources.
Figure 4

Table 1 gives data about the different power sources.

Table 1

Power source	Number of charges	Mass in grams
Compact	1	100
Large	5	200
High capacity	10	600

The student chose the large power source.
Suggest why the student chose the large power source.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Sugge why the student chose the large power source.

Figure 5

The girl has a mass of 50 kg

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$	Calculate the gravitational potential energy (g.p.e.) of the girl at the top of the ramp.

Use the equation:
g.p.e. $=$ mass \times gravitational field strength \times height
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
g.p.e. $=$ \qquad J

Calculate the kinetic energy of the girl at the bottom of the ramp.
Use the equation:
kinetic energy $=0.5 \times$ mass $\times(\text { speed })^{2}$
\qquad
\qquad
Kinetic energy = \qquad J

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{3}$ Not all of the g.p.e. has been transferred to kinetic energy.

Which two statements explain why?
Tick two boxes.

Some energy is wasted.

The mass of the girl is too low.

The ramp is not high enough.

The g.p.e. of the girl is not zero.

The speed of the girl is too great.

| 0 | 3 | 4 | Explain how lubricating the wheels of the skateboard can increase the speed of |
| :--- | :--- | :--- | :--- | the girl.

Use ideas about energy in your explanation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | $\mathbf{4}$ Some ceiling lights in the home are connected to the mains by a two-core cable. |
| :--- | :--- | :--- |

Figure 6 shows a ceiling light.
Figure 6

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ Write down the equation that links charge flow, current and time. |
| :--- | :--- | :--- | :--- |

 Calculate the charge flow through the wire.

Use your equation from question 04.2
\qquad
\qquad
Charge flow = \qquad C

| 0 | $\mathbf{4} .4$ | Figure 7 shows a current potential difference graph for a piece of copper wire. |
| :--- | :--- | :--- | :--- |

Figure 7

Draw another line on Figure 7 for a wire with a different resistance.

Question 4 continues on the next page

Some fuses have a thin piece of copper that melts if the current is too large.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{5}$	Draw the circuit symbol for a fuse.

| $\mathbf{0}$ | $\mathbf{4}$ | 6 | Describe how the movement of the copper particles in the wire changes when |
| :--- | :--- | :--- | :--- | copper melts.

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$
$\mathbf{7}$	Old copper wires are melted when they are recycled.

Calculate the energy needed to melt 500 kg of copper at its melting point.
Specific latent heat of fusion of copper $=200 \mathrm{~kJ} / \mathrm{kg}$
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad J

$\mathbf{0}$	$\mathbf{5}$	Radioactive nuclei can emit alpha, beta or gamma radiation.

| $\mathbf{0}$ | $\mathbf{5}$ | .1 |
| :--- | :--- | :--- | Which type of radiation is the most penetrating?

Tick one box.

Alpha (α) \square

Beta (β)

Gamma (y)

| $\mathbf{0}$ | $\mathbf{5} .2$ |
| :--- | :--- | $\mathbf{2}$ Which type of radiation is the most ionising?

Tick one box.

Alpha (α)

Beta (β)

Gamma (y)

| 0 | 5 | 3 |
| :--- | :--- | :--- | $\mathbf{3}$ Which type of radiation has the longest range in air?

Tick one box.

Alpha (α)

Beta (β)

Gamma (y)

Question 5 continues on the next page

When radioactive isotopes in the Earth's crust decay they release energy.
The decay causes the heating of rocks in the crust.

0	$\mathbf{5} .4$	Figure 8 shows the decay of uranium-238 (U-238) into thorium-234 (Th-234).

Figure 8

$$
{ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}
$$

Complete Table 2 to show the number of neutrons and protons in the nuclei.

Table 2

Isotope	Number of neutrons	Number of protons
uranium-238	146	
thorium-234		90

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ Geothermal power stations pump water through heated rocks. |
| :--- | :--- | :--- | :--- |

The temperature of the water increases from $20^{\circ} \mathrm{C}$ to its boiling point of $100^{\circ} \mathrm{C}$
Calculate the change in thermal energy when the mass of water heated is 150 kg Specific heat capacity $=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
Change in thermal energy = \qquad J

0	6	Figure 9 shows two models of the atom.

Figure 9

Plum pudding model

Nuclear model

0	6	1	Write the labels on Figure 9

Choose the answers from the box.

atom	electron	nucleus
neutron	orbit	proton

| $\mathbf{0}$ | 6 | $\mathbf{2}$ Explain why the total positive charge in every atom of an element is always the same. C |
| :--- | :--- | :--- | [2 marks]

\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

| $\mathbf{0}$ | $\mathbf{6}$ | .3 |
| :--- | :--- | :--- | The results from the alpha particle scattering experiment led to the nuclear model.

Alpha particles were fired at a thin film of gold at a speed of 7% of the speed of light.
Determine the speed of the alpha particles.
Speed of light $=300000000 \mathrm{~m} / \mathrm{s}$
\qquad
\qquad
Speed $=$ \qquad m/s

0	6	4	Figure 10 shows two atoms represented as solid spheres.

Figure 10

A hydrogen atom has a radius of $2.5 \times 10^{-11} \mathrm{~m}$
Determine the radius of a magnesium atom.
Use measurements from Figure 10
\qquad
\qquad
Radius = \qquad m

| 0 | $\mathbf{7}$ | A student wanted to determine the density of the irregular shaped object shown |
| :--- | :--- | :--- | in Figure 11

Figure 11

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{1}$ Plan an experiment that would allow the student to determine the density |
| :--- | :--- | :--- | of the object.

\qquad

Question 7 continues on the next page

0	$\mathbf{7}$.	2
Another student did a similar experiment.		

He determined the density of five common plastic materials.
Table 3 shows the results.
Table 3

Plastic material	Density in $\mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$
Acrylic	1200
Nylon	1000
Polyester	1380
Polystyrene	1040
PVC	1100

Figure 12 shows the results plotted in a bar chart.
Figure 12

Complete Figure 12

You should:

- Write the correct scale on the y-axis.
- Draw the bars for polyester, polystyrene and PVC.

0	$\mathbf{7}$.	$\mathbf{3}$ The student is given a piece of a different plastic material.

The student determined the density of the material three times.
Table 4 shows the results.
Table 4

	Table 4
	Density in kg/m³
1	960
2	1120
3	1040

Determine the uncertainty in the student's results.
A
\qquad
\qquad
Uncertainty = \qquad $\mathrm{kg} / \mathrm{m}^{3}$

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

