AQA

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE **COMBINED SCIENCE: TRILOGY**

Higher Tier Chemistry Paper 1H

Thursday 17 May 2018

Materials

For this paper you must have:

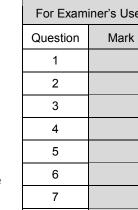
- a ruler
- a scientific calculator
- the periodic table (enclosed).

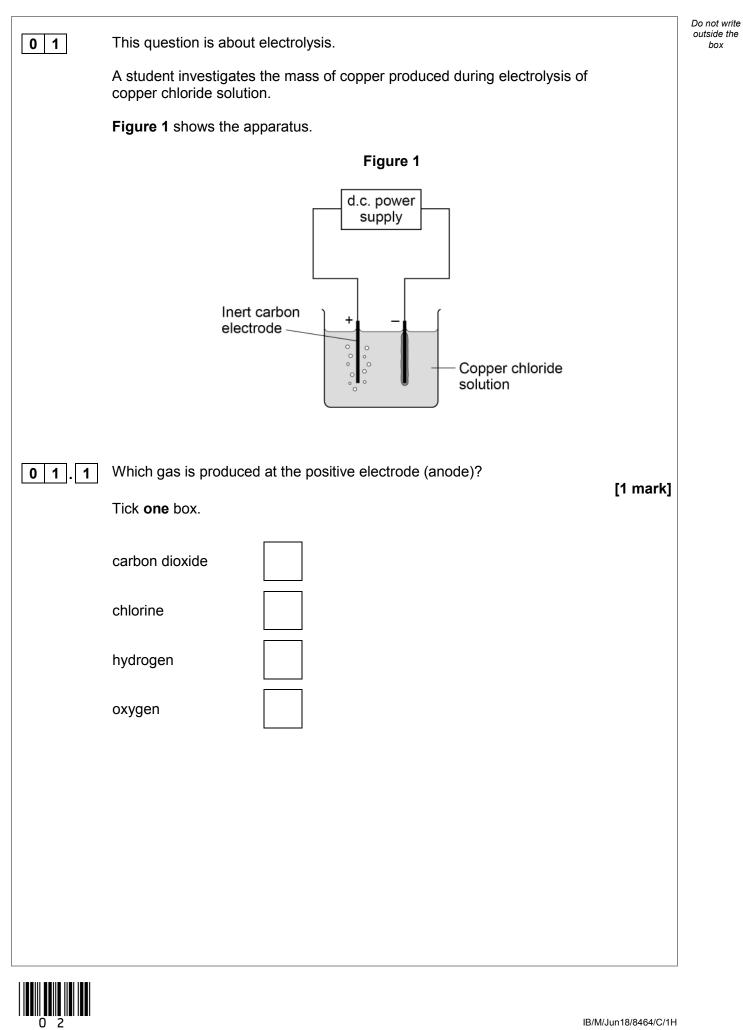
Instructions

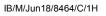
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.


For Examiner's Use Question Mark 1 2 3 4 5 6 7 8 TOTAL

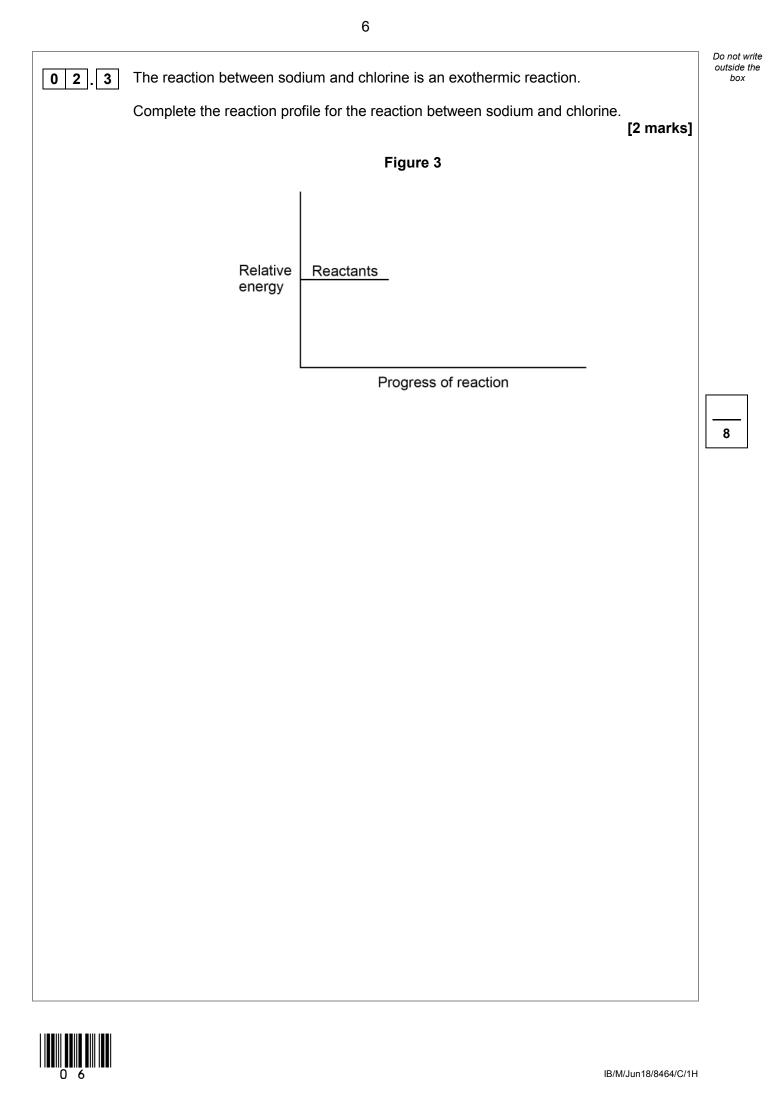

Η



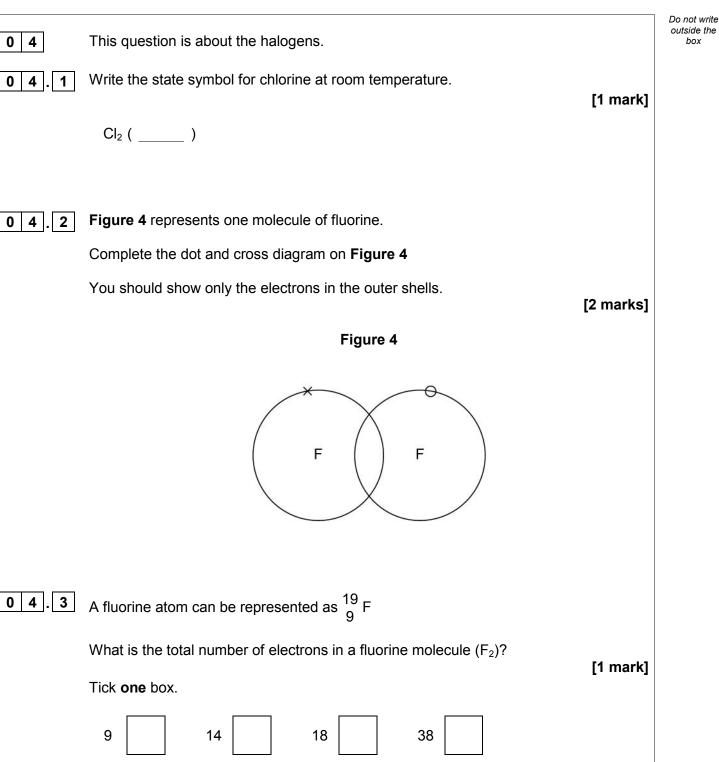
Morning

Time allowed: 1 hour 15 minutes

1.2	Copper is produce	ed at the negative	electrode (catho	de).	
	What does this tel	l you about the re	eactivity of coppe	?	[4. va a vi/s]
	Tick one box.				[1 mark]
	Copper is less rea	ctive than hydroc	gen		
	Copper is less rea	ctive than oxygei	n		
	Copper is more re	active than carbo	n		
	Copper is more re	active than chlori	ine		
	Table 1 shows the	e student's results	S. Table 1		
		To		per produced in n	ng
	Time in mins	Experiment 1	Experiment 2	Experiment 3	Mean
	1	0.60	0.58	0.62	0.60
	2	1.17	1.22	1.21	1.20
	4	2.40	2.41	2.39	2.40
	5	3.02	X	3.01	3.06
1].[3]	Determine the me	an mass of copp	er produced after	3 minutes.	[1 mark]
			Mass =		mg
	Qu	estion 1 continu	ues on the next p	bage	
					Turn over


0 1.4	Calculate the mass X of copper produced in Experiment 2 after 5 minutes. Use Table 1 on page 3	Do not write outside the box
	[2 marks]	
	Mass X = mg	
0 1.5	The copper chloride solution used in the investigation contained 300 grams per dm^3 of solid CuCl ₂ dissolved in 1 dm^3 of water.	
	The student used 50 cm ³ of copper chloride solution in each experiment.	
	Calculate the mass of solid copper chloride used in each experiment. [3 marks]	
	Mass = g	
		8

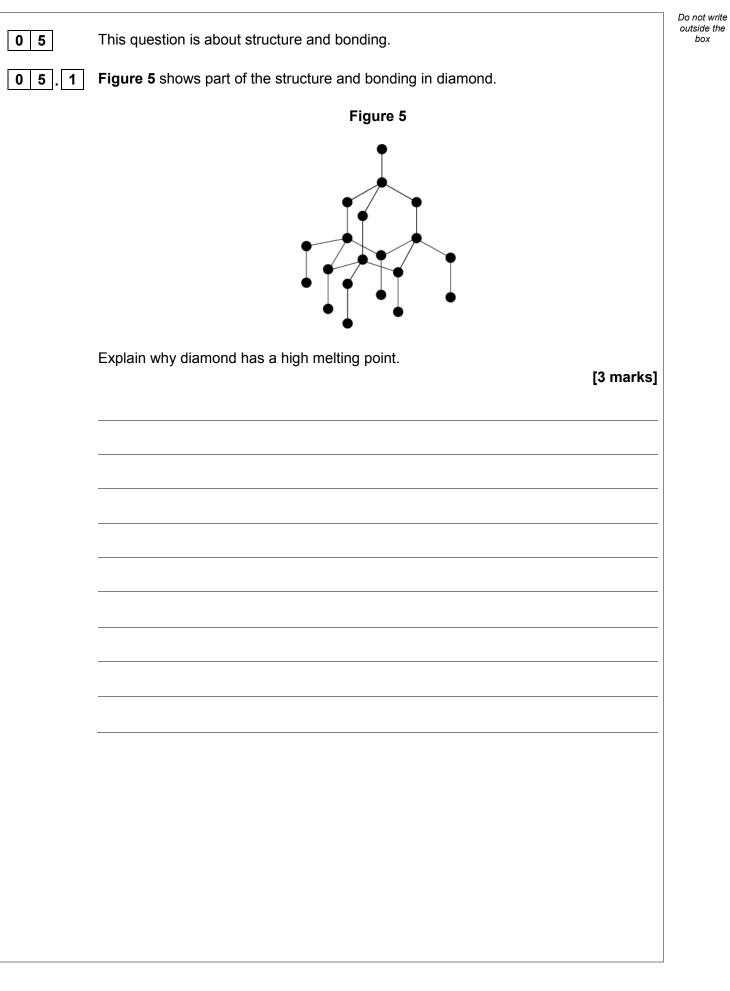
0 2	This question is about sodium and chlorine.			
	Figure 2 shows the positions of sodium and chlorine in the periodic table.			
	Figure 2			
	Na CI I I <			
02.1	State one difference and one similarity in the electronic structure of sodium and of chlorine. [2 marks] Difference			
	Similarity			
02.2	Sodium atoms react with chlorine atoms to produce sodium chloride (NaCl). Describe what happens when a sodium atom reacts with a chlorine atom. Write about electron transfer in your answer.			
	[4 marks]			



Turn over ►

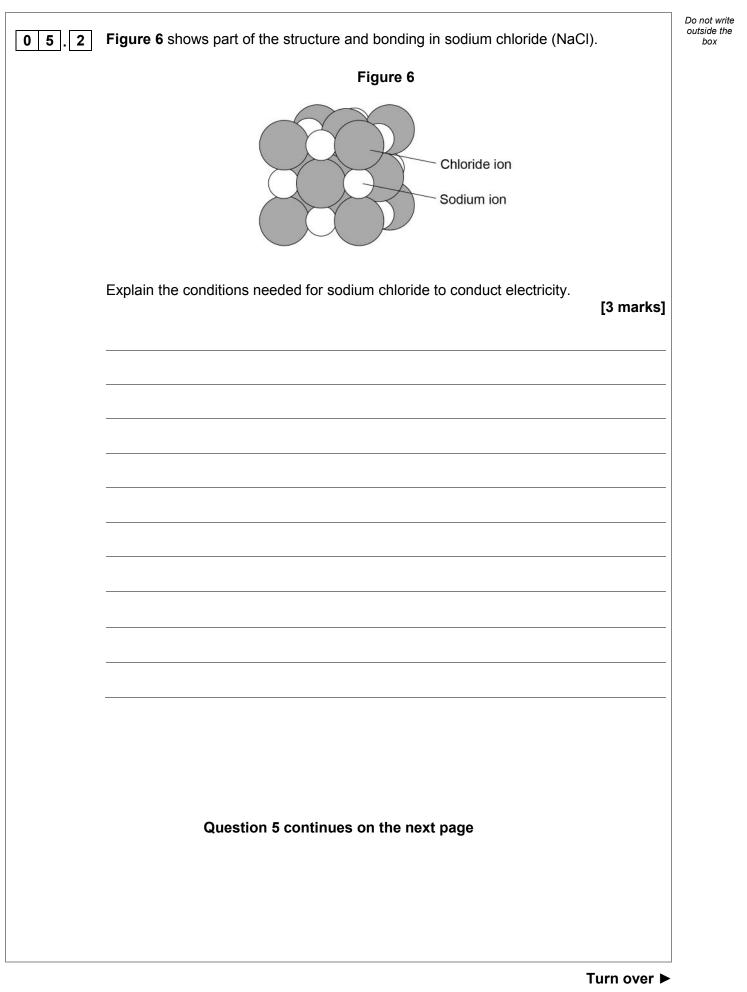
3	A student plans a method to prepare pure crystals of copper sulfate.	Do n outs
	The student's method is:	
	 Add one spatula of calcium carbonate to dilute hydrochloric acid in a beaker. When the fizzing stops, heat the solution with a Bunsen burner until all the liquid is gone. 	
	The method contains several errors and does not produce copper sulfate crystals.	
	Explain the improvements the student should make to the method so that	
	pure crystals of copper sulfate are produced. [6 marks]
		_
		_
		-
		_
		_
		_
		_
		_
		-
		_
		_
		_
		_
		_
		_
		_
		_
		6

0 4 . 4 Aluminium reacts with bromine to produce aluminium bromide. Complete the balanced chemical equation for this reaction. [2 marks] $AI + Br_2 \rightarrow 2$

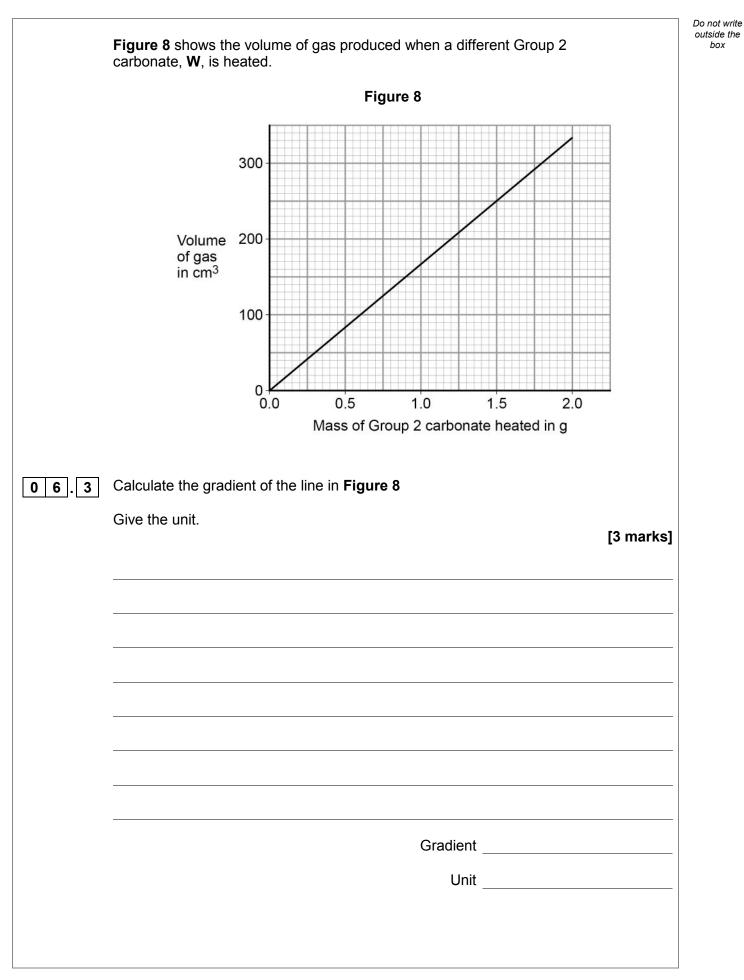


0

box


04.5	When chlorine reacts with potassium bromide, chlorine displaces bromine.	Do not write outside the box
	$Cl_2 + 2 \text{ KBr} \rightarrow \text{Br}_2 + 2 \text{ KCl}$	
	Explain why chlorine is more reactive than bromine. [3 marks]	
		9
	Turn over for the next question	

10


IB/M/Jun18/8464/C/1H

0 5.3	Figure 7 shows the structure of sodium.	Do not write outside the box
	Figure 7	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Describe how sodium conducts thermal energy. [3 marks]	
		9

06	Group 2 metal carbonates thermally decompose to produce a metal oxide and a gas.	Do not write outside the box
06.1	Give the formula of each product when calcium carbonate (CaCO ₃) is heated. [2 marks]	
	and	
0 6.2	The relative formula mass (M_r) of a Group 2 metal carbonate is 197	
	Relative atomic masses (A_r): C = 12 O = 16 Calculate the relative atomic mass (A_r) of the Group 2 metal in the metal carbonate.	
	Name the Group 2 metal.	
	[3 marks]	
	Relative atomic mass (A _r) =	
	Metal	
	Question 6 continues on the next page	

0 6.4	24 dm ³ of gas is produced when one mole of a Group 2 carbonate is heated.	Do not write outside the box
	Determine the relative formula mass of the Group 2 carbonate W .	
	Use Figure 8 [4 marks]	
	Relative formula mass (M_r) =	
		12
	Turn over for the next question	
		I

Turn over ►

A scientist does two tests on four white solids. The solids are labelled A, B, C and D.

Test 1 Adds the sample of the solid to distilled water and stirs.

Test 2 Measures the pH of the solution after Test 1

 Table 2 shows the results.

0 7

Table 2

Solid	Appearance after stirring	рН
Α	colourless solution, no solid	14
В	colourless solution, no solid	3
С	colourless solution, solid remains	9
D	colourless liquid, solid remains	7

These four solids are:

- magnesium oxide
- phosphorus oxide
- silicon dioxide
- sodium oxide.

Table 3 shows the solubility of these four solids in water.

Table 3

Solid	Solubility in grams per 100 cm ³ of water
Magnesium oxide	0.01
Phosphorus oxide	52
Silicon dioxide	0
Sodium oxide	109

Do not write outside the

box

0 7.1	Identify the solids A , B , C and D .	Do not write outside the box
	Explain your answers. [6 marks]	
	Question 7 continues on the next page	

Turn over ►

0 7. **2** 10 cm³ of solution **B** is added to a beaker.

Distilled water is added to the beaker until the final volume in the beaker is 1000 \mbox{cm}^3

The pH of the solution is measured before and after distilled water is added.

Table 4 shows the results.

Table 4

Volume of solution in beaker	pH of solution B
10 cm ³	3
1000 cm ³	X

Calculate the value of X.

X =

8

[2 marks]

0 8	This question is about iron.	Do not write outside the box
	Iron reacts with dilute hydrochloric acid to produce iron chloride solution and one other product.	
08.1	Name the other product. [1 mark	[]
0 8.2	Suggest how any unreacted iron can be separated from the mixture. [1 mark	
	Magnesium reacts with iron chloride solution. $3 \text{ Mg} + 2 \text{ FeCl}_3 \rightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$	
0 8 . 3	0.120 g of magnesium reacts with excess iron chloride solution. Relative atomic masses (A_r): Mg = 24 Fe = 56	
	Calculate the mass of iron produced, in mg [5 marks	5]
		_
		_
		_
		_
		_
	Mass of iron = mg Question 8 continues on the next page	

		D	not write
0 8.4	Explain which species is reduced in the reaction between magnesium and iron chloride.	outs	not write side the box
	$3 \text{ Mg} + 2 \text{ FeCl}_3 \rightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$		
	Your answer should include the half equation for the reduction.	[3 marks]	
		10	D
	END OF QUESTIONS		
Copyright information	tion		
separate booklet rat	urposes, from the November 2015 examination series, acknowledgements of third party copyright material will be publish ther than including them on the examination paper or support materials. This booklet is published after each examination wnload from www.aqa.org.uk after the live examination series.	ed in a series and is	
	duce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsu o rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hi		

Copyright $\ensuremath{\textcircled{O}}$ 2018 AQA and its licensors. All rights reserved.

