Please write clearly ir	ו block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE COMBINED SCIENCE: SYNERGY

Higher Tier Paper 4 Physical Sciences

Wednesday 10 June 2020

Morning Tir

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0 1	This question is about polymers and plastics.	Do not write outside the box
	Figure 1 shows the displayed formula for poly(chloroethene).	
	Figure 1 $ \begin{pmatrix} H & H \\ & \\ C & -C \\ & \\ H & Cl \\ \end{pmatrix}_n $	
01.1	What does 'n' represent in the displayed formula for poly(chloroethene)? [1 mark]	
01.2	The representation of poly(chloroethene) in Figure 1 does not show the actual structure of the molecule. Give one reason why. [1 mark]	
	Poly(chloroethene) is commonly known as PVC. PVC does not decompose in the ground. Many polymer plastics like PVC become pollutant waste in the oceans.	
	In the oceans, PVC can break into smaller pieces. The smaller pieces are called PVC nanoplastic.	

0 1.3	A piece of PVC nanoplastic has a thickness of 50 nm	Do not write outside the box
	Calculate the thickness of the PVC nanoplastic in metres.	
	Give your answer in standard form.	
	1 nm = 0.000 000 001 m [2 marks	s]
		m
01.4	Suggest two reasons why PVC nanoplastic can be harmful to marine life. [2 mark	s]
	1	
	2	
0 1.5	Suggest two ways to reduce plastic waste. [2 mark	s]
	1	_
	2	
		8

IB/M/Jun20/8465/4H

Turn over ►

03.2	Write down the equation which links extension (<i>e</i>), force (<i>F</i>) and spring constant (<i>k</i>). [1 mark]	Do not w outside t box
03.3	The extension of the spring was 0.12 m when the force was 3.0 N Calculate the spring constant of the spring. [3 marks]	
	Spring constant =N/m	
	Question 3 continues on the next page	
	Turn over ►	

IB/M/Jun20/8465/4H

Do not write outside the 0 4 box A student investigated how the acceleration of a trolley varied with the resultant force on the trolley. The force on the trolley was provided by the masses on the string. Figure 5 shows how the student set up the equipment. Figure 5 Datalogger Card 0.00 m/s² Light Light H I I II gate A gate B Trolley String Pulley 0 Sloping runway Masses This is the method used. 1. Release the trolley from the top of the runway. 2. As the card passes each light gate a timer turns on and off. 3. The datalogger calculates the velocity of the trolley at light gate **A** and at light gate **B**. 4. The datalogger calculates the acceleration using the two velocities. 5. Repeat steps 1 to 4 using different masses.

04.1	Which two measurements are needed to determine the velocity of the trolley light gate?	y at each	Do not write outside the box
	Tick (✓) two boxes.	[2 marks]	
	Angle of sloping runway		
	Distance between light gates		
	Length of card		
	Resultant force causing the acceleration		
	Time that light gates are blocked by the card		
04.2	Why was a sloping runway used instead of a flat runway?	[1 mark]	
	Tick (✓) one box.		
	To compensate for the effect of friction		
	To increase the effect of air resistance on the trolley		
	To make the trolley accelerate		
	Question 4 continues on the next page		

_

04.3	What are two advantages of using a datalogger and light gates instead of a in this investigation? Tick (✓) two boxes. Ensures readings are repeatable Ensures readings are reproducible No reaction time error	a stopclock [2 marks]	Do not write outside the box
	No systematic errors		
	Performs calculations automatically		
04.4	Write down the equation which links acceleration (a), mass (m) and resultant force (F).	[1 mark]	
04.5	The acceleration of the trolley was 2.4 m/s ² The resultant force on the trolley was 1.2 N Calculate the mass of the trolley.	[3 marks]	
	 Mass =	kg	9

0 5.1

0 5

A student investigated the temperature change when a metal was added to 25 cm^3 of dilute sulfuric acid.

The student repeated the investigation with different metals.

The student kept all other variables constant.

Table 1 shows the results.

Table 1

Metal	Initial temperature in °C	Maximum temperature in °C
Magnesium	18.0	37.5
Nickel	18.0	22.0
Zinc	18.0	27.5

	Another student investigated displacement reactions of metals.	Do not write outside the box
	The student added magnesium, nickel and zinc to different metal sulfate solutions and recorded when a reaction occurred.	
0 5 2	Predict which metals will react with each metal sulfate solution.	
	Complete Table 2.	
	You should:	
	• use a tick (\checkmark) to show where a reaction will occur	

• use a cross (**x**) to show where **no** reaction will occur.

Table 1 is repeated here to help you.

[3 marks]

Table 1

Metal	Initial temperature in °C	Maximum temperature in °C
Magnesium	18.0	37.5
Nickel	18.0	22.0
Zinc	18.0	27.5

Table 2

		Metal sulfate solution	
Metal	Magnesium sulfate	Nickel sulfate	Zinc sulfate
Magnesium			
Nickel			
Zinc			

0 5.3	The student dissolved 0.0025 moles of nickel sulfate in water to make 5 cm ³ of nickel sulfate solution.	outside the box
	Calculate the concentration of the nickel sulfate solution in g/dm ³	
	Relative formula mass (<i>M</i> _r) of nickel sulfate = 155 [3 marks]	
	Concentration =g/dm ³	8
	Turn over for the next question	
	Turn over ►	

This is the method used.

- 1. Hold the ball at eye level and record the drop height using the metre rule.
- 2. Drop the ball and measure the bounce height using the metre rule.
- 3. Take repeat readings and calculate a mean.
- 4. Repeat steps 1 to 3 for different drop heights.

	Give the valu		Value =	next page		mark] cm
	Give the valu					
	Give the valu	e mai should hav	Value =			
	Give the valu	e mai should hav			[1	mark]
1		a that about a key	e been recorded	J.		I
06	. 2 The mean va	lue of 55.833 has	not been record	ded correctly in ⁻	Table 3.	
			X =			cm
06	. 1 Calculate val	ue X in Table 3 .			[2	marks]
			55.5	55.5	55.833	
	100.0	56.5	55 <u>5</u>			
	80.0 100.0	43.0 56.5	45.5	42.5	43.7	

Table 3 shows the results.

Test 1

9.5

22.5

40.5

Drop height in centimetres

20.0

40.0

60.0

Table 3

Test 2

10.0

23.5

29.5

Bounce height in centimetres

Test 3

10.5

21.0

31.5

Mean

10.0

22.3

Х

06.4							Do not write outside the box	
		Т	Table 4					
	Drop height	В	ounce height	in centimetr	es			
	in centimetres	Test 1	Test 2	Test 3	Mean			
	20.0	9.5	10.0	10.5	10.0			
	Calculate the uncertainty in the student's results when the drop height was 20.0 cm [2 marks]							
	Uncertainty = ± cm							
06.5	The investigation wa	as repeated u	sing a video c	amera to reco	ord the motic	on of the ball.		
	Explain why using a video camera could reduce the uncertainty in the results for bounce height.							
	2001100 Holgha					[2 marks]		
	-	Γurn over for	[.] the next que	estion				

0 7.2	A gas-fired power station has a power output of 50 MW	Do not write outside the box
	Calculate the energy transferred during 24 hours. [4 marks]	
	[+ mark9]	
	Energy transferred =J	
	Question 7 continues on the next page	
	Turn over ►	

07.3Table 5 shows some of the waste products produced by three different types of power station.

Т	a	b	le) (5

Type of power station	Carbon dioxide produced in kg/MJ	Other waste products
Coal	0.08	sulfur dioxide
Geothermal	0.03	none
Nuclear	0.00	radioactive waste

Evaluate the environmental impact of the power stations in Table 5.

[4 marks]

13

Do not write outside the

box

0 8.3	The rate of production of hydrogen and of chlorine at the electrodes is the same.	Do not write outside the box
	Explain how the graph on Figure 11 shows that chlorine is more soluble	
	than hydrogen. [2 marks]	
0 8 . 4	Explain why hydrogen gas is produced at the negative electrode in the electrolysis of potassium chloride solution. [4 marks]	
08.5	Write the half equation for the production of chlorine gas at the positive electrode. [2 marks]	
		<u> </u>
	$ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _$	
	Turn over ►	

09	Hydrogen peroxi	de (H ₂ O ₂)	decompo	oses to produc	ce oxyger	n gas	and water.		Do not write outside the box
09.1	Balance the equ	ation for th	ne reactic	n.				[1 mark]	
			H_2O_2	→	H ₂ O	+	O ₂		

	Question 9 continues on the next page
	Explain why. [2 marks]
	are observed.
	When boiled potato is added to hydrogen peroxide no bubbles of oxygen
09.3	The student repeated the investigation using boiled potato instead of raw potato.
	[3 marks]
	Explain why.
	The hydrogen peroxide decomposed at a different rate when using a cube of raw potato compared with using crushed raw potato.
	The student kept all other variables constant.
	 crushed raw potato as the catalyst.
	a cube of raw potato as the catalyst
09.2	A student compared the rate of decomposition of hydrogen peroxide using:
	manganese dioxide.
	Two catalysts that can be used in the reaction are raw potato and

Turn over ►

Determine the rate of reaction at 15 s [4 marks]	Do not write outside the box
Rate = cm ³ /s	10
Turn over for the next question	
Turn over ► 3 1 IB/M/Jun20/8465/4t	

10.4	Determine the total displacement of the train between 0 seconds and 25 seconds. [5 marks]	Do not write outside the box
	Displacement =m	
10.5	At a different point in the journey the train decelerates from a velocity of 40 m/s to a velocity of 15 m/s The deceleration is 2.0 m/s ²	
	Calculate the distance the train travels while decelerating. [3 marks]	
	Distance =m	
	Question 10 continues on the next page Turn over ►	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.				

Do out

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/Jun20/8465/4H