AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname

Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: SYNERGY

Higher Tier Paper 4 Physical Sciences

Wednesday 10 June 2020 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

\section*{| $\mathbf{0}$ | $\mathbf{1}$ This question is about polymers and plastics. |
| :--- | :--- |}

Figure 1 shows the displayed formula for poly(chloroethene).

Figure 1

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ What does ' n ' represent in the displayed formula for poly(chloroethene)? |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1} .2$ | 2 |
| :--- | :--- | :--- | structure of the molecule.

Give one reason why.
\qquad
\qquad

Poly(chloroethene) is commonly known as PVC.
PVC does not decompose in the ground.

Many polymer plastics like PVC become pollutant waste in the oceans.
In the oceans, PVC can break into smaller pieces.
The smaller pieces are called PVC nanoplastic.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	A piece of PVC nanoplastic has a thickness of 50 nm

Calculate the thickness of the PVC nanoplastic in metres.
Give your answer in standard form.
$1 \mathrm{~nm}=0.000000001 \mathrm{~m}$
\qquad
\qquad
\qquad
Thickness $($ in standard form $)=$ \qquad m

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{4}$ Suggest two reasons why PVC nanoplastic can be harmful to marine life.

1
\qquad
2 \qquad
\qquad
$\begin{array}{lll}0 & 1 & 5 \\ 5 & \text { Suggest two ways to reduce plastic waste. }\end{array}$

1 \qquad
2 \qquad
\qquad
Conor m
,
\qquad

2
-

| 0 | 2 |
| :--- | :--- | A student wanted to make blue copper sulfate crystals from green copper carbonate

Figure 2

Step 2

Step 3

The student obtained a mixture of coloured powders not blue crystals.
Describe how the method could be improved so that blue copper sulfate crystals are produced.
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{3}$ A student investigated how the extension of a spring varied with the force acting on |
| :--- | :--- | :--- | the spring.

Figure 3 shows the equipment the student used and a ruler scale between 10 cm and 15 cm

Figure 3

Unstretched spring

Ruler

Stretched

 spring

0	3	1
1	Describe how the student should determine the extension of the spring.	

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} .3$ The extension of the spring was 0.12 m when the force was 3.0 N |
| :--- | :--- | :--- | Calculate the spring constant of the spring.

\qquad
\qquad
\qquad
\qquad
\qquad
Spring constant $=$ N / m

Question 3 continues on the next page

0	$\mathbf{3} .4$	$\mathbf{4}$ Figure $\mathbf{4}$ shows the results of the same investigation using a different spring.

Figure 4

The spring constant of the spring was $40 \mathrm{~N} / \mathrm{m}$
Determine the energy stored by the spring when the force was 3.6 N
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy stored = \qquad

| 0 | 4 | A student investigated how the acceleration of a trolley varied with the resultant force |
| :--- | :--- | :--- | on the trolley.

The force on the trolley was provided by the masses on the string.

Figure 5 shows how the student set up the equipment.

Figure 5

This is the method used.

1. Release the trolley from the top of the runway.
2. As the card passes each light gate a timer turns on and off.
3. The datalogger calculates the velocity of the trolley at light gate \mathbf{A} and at light gate \mathbf{B}.
4. The datalogger calculates the acceleration using the two velocities.
5. Repeat steps $\mathbf{1}$ to $\mathbf{4}$ using different masses.

| 0 | 4 | 1 |
| :--- | :--- | :--- | Which two measurements are needed to determine the velocity of the trolley at each light gate?

Tick (\checkmark) two boxes.

Angle of sloping runway \square

Distance between light gates \square

Length of card \square

Resultant force causing the acceleration

Time that light gates are blocked by the card

| 0 | 4 | 2 |
| :--- | :--- | :--- | Why was a sloping runway used instead of a flat runway?

Tick (\checkmark) one box.

To compensate for the effect of friction \square
To increase the effect of air resistance on the trolley \square
To make the trolley accelerate \square
 in this investigation?

Tick (\checkmark) two boxes.

Ensures readings are repeatable

Ensures readings are reproducible

No reaction time error

No systematic errors

Performs calculations automatically

| 0 | 4 | 4 | Write down the equation which links acceleration (a), mass (m) and |
| :--- | :--- | :--- | :--- | resultant force (F).

\qquad

| 0 | 4 | 5 |
| :--- | :--- | :--- | The acceleration of the trolley was $2.4 \mathrm{~m} / \mathrm{s}^{2}$

The resultant force on the trolley was 1.2 N
Calculate the mass of the trolley.
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad kg

\square

Turn over for the next question Turn over

Table 1

Metal	Initial temperature in ${ }^{\circ} \mathbf{C}$	Maximum temperature in ${ }^{\circ} \mathbf{C}$
Magnesium	18.0	37.5
Nickel	18.0	22.0
Zinc	18.0	27.5

Figure 6 shows an incomplete bar chart for the data in Table 1.

Figure 6

Complete Figure 6.

You should:

- write the correct scale on the y-axis
- plot the bar for magnesium.

Question 5 continues on the next page

Another student investigated displacement reactions of metals.
The student added magnesium, nickel and zinc to different metal sulfate solutions and recorded when a reaction occurred.

0	5	2

Complete Table 2.

You should:

- use a tick (\checkmark) to show where a reaction will occur
- use a cross (\mathbf{x}) to show where no reaction will occur.

Table 1 is repeated here to help you.

Table 1

Metal	Initial temperature in ${ }^{\circ} \mathbf{C}$	Maximum temperature in ${ }^{\circ} \mathbf{C}$
Magnesium	18.0	37.5
Nickel	18.0	22.0
Zinc	18.0	27.5

Table 2

	Metal sulfate solution		
Metal	Magnesium sulfate	Nickel sulfate	Zinc sulfate
Magnesium			
Nickel			
Zinc			

$\begin{array}{lll}\mathbf{0} & \mathbf{5} . & \mathbf{3} \text { The student dissolved } 0.0025 \text { moles of nickel sulfate in water to make } 5 \mathrm{~cm}^{3} \text { of }\end{array}$ nickel sulfate solution.

Calculate the concentration of the nickel sulfate solution in $\mathrm{g} / \mathrm{dm}^{3}$
Relative formula mass $\left(M_{\mathrm{r}}\right)$ of nickel sulfate $=155$
\qquad
\qquad
\qquad
\qquad
\qquad
Concentration $=$ \qquad $\mathrm{g} / \mathrm{dm}^{3}$

| 0 | 6 |
| :--- | :--- | A student investigated how the bounce height of a ball varied with drop height.

Figure 7 shows the ball before and after bouncing.

Figure 7

This is the method used.

1. Hold the ball at eye level and record the drop height using the metre rule.
2. Drop the ball and measure the bounce height using the metre rule.
3. Take repeat readings and calculate a mean.
4. Repeat steps $\mathbf{1}$ to $\mathbf{3}$ for different drop heights.

Table 3 shows the results.
\qquadDrop height in centimetres Bounce height in centimetres Test 1 Test 2 Test 3 Mean 20.0 9.5 10.0 10.5 10.0 40.0 22.5 23.5 21.0 22.3 60.0 40.5 29.5 31.5 X 80.0 43.0 45.5 42.5 43.7 100.0 56.5 55.5 55.5 55.833

\qquad
\qquad
\qquad
\qquad
$X=$
cm

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ The mean value of 55.833 has not been recorded correctly in Table 3.

Give the value that should have been recorded.

Value $=$ \qquad cm

0	6	$\mathbf{3}$	Figure 8 shows some of the results.

Figure 8

What is the relationship between mean bounce height and drop height?
\qquad
\qquad

0	6	4

Table 4

Drop height in centimetres	Bounce height in centimetres			
	Test 1	Test 2	Test 3	Mean
20.0	9.5	10.0	10.5	10.0

Calculate the uncertainty in the student's results when the drop height was 20.0 cm [2 marks]
\qquad
\qquad
\qquad
Uncertainty $= \pm$ \qquad cm
 Explain why using a video camera could reduce the uncertainty in the results for bounce height.
[2 marks]
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	Figure 9 shows how the National Grid connects power stations to consumers.

Figure 9

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$ Explain how transformers are used in the National Grid.

\qquad

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{2}$	A gas-fired power station has a power output of 50 MW

Calculate the energy transferred during 24 hours.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy transferred = J

Question 7 continues on the next page

| 0 | $\mathbf{7}$. | $\mathbf{3}$ Table 5 shows some of the waste products produced by three different types of |
| :--- | :--- | :--- | :--- | power station.

Table 5

Type of power station	Carbon dioxide produced in $\mathbf{~ k g} / \mathbf{M J}$	Other waste products
Coal	0.08	sulfur dioxide
Geothermal	0.03	none
Nuclear	0.00	radioactive waste

Evaluate the environmental impact of the power stations in Table 5.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8} \quad$ A student investigated the electrolysis of potassium chloride solution.

Figure 10 shows the apparatus used.

Figure 10

$\begin{array}{lll}\mathbf{0} & \mathbf{8} . & \mathbf{1} \text { Why are inert electrodes used? }\end{array}$
\qquad
\qquad

Question 8 continues on the next page

The student measured the volume of gas collected at each electrode for 25 minutes.

Figure 11 shows the results.

Figure 11

0	$\mathbf{8}$	2	Compare the rate of collection of hydrogen and of chlorine.

Give one similarity and one difference in the rate of collection of the gases.
[2 marks]
Similarity \qquad
\qquad
Difference \qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ The rate of production of hydrogen and of chlorine at the electrodes is the same. |
| :--- | :--- | :--- | :--- |

Explain how the graph on Figure 11 shows that chlorine is more soluble than hydrogen.
\qquad
\qquad
\qquad
\qquad

0	8	4
4	Explain why hydrogen gas is produced at the negative electrode in the electrolysis of	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	8	5	Write the half equation for the production of chlorine gas at the positive electrode.

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{1}$ Balance the equation for the reaction.

$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \quad \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Two catalysts that can be used in the reaction are raw potato and manganese dioxide.

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{2}$ A student compared the rate of decomposition of hydrogen peroxide using:

- a cube of raw potato as the catalyst
- crushed raw potato as the catalyst.

The student kept all other variables constant.

The hydrogen peroxide decomposed at a different rate when using a cube of raw potato compared with using crushed raw potato.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{llll}0 & 9 & 3 & \text { The student repeated the investigation using boiled potato instead of raw potato. }\end{array}$
When boiled potato is added to hydrogen peroxide no bubbles of oxygen are observed.

Explain why.
\qquad
\qquad
\qquad
\qquad
Question 9 continues on the next page

| 0 | 9 | 4 | The student then investigated the rate of decomposition of hydrogen peroxide using |
| :--- | :--- | :--- | :--- | manganese dioxide as the catalyst.

The student measured the volume of oxygen produced every 5 seconds for 50 seconds.

Figure 12 shows the results.

Figure 12

Determine the rate of reaction at 15 s
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Rate $=$ $\mathrm{cm}^{3} / \mathrm{s}$

Turn over for the next question

| 1 | 0 |
| :--- | :--- |\quad Figure 13 shows a girl inside a train. The girl is wearing inline skates.

The train is moving at a constant velocity. The girl is stationary relative to the train.

Figure 13

$\begin{array}{llll}1 & 0 & 1 & \text { The girl is not touching the train walls. }\end{array}$
The train suddenly decelerates.
Explain what will happen to the movement of the girl as the train suddenly decelerates.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 14 shows a velocity-time graph for the train for part of its journey.

Figure 14

 time taken (t).
\qquad

\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

Displacent =
$\begin{array}{llll}1 & 0 & 5 & \text { At a different point in the journey the train decelerates from a velocity of } 40 \mathrm{~m} / \mathrm{s} \text { to a }\end{array}$ velocity of $15 \mathrm{~m} / \mathrm{s}$

The deceleration is $2.0 \mathrm{~m} / \mathrm{s}^{2}$

Calculate the distance the train travels while decelerating.
\qquad
\qquad
\qquad
\qquad
\qquad
Distance =
m

Question 10 continues on the next page

1	0	6	Figure 15 shows part of the track for the train's journey.

The train moves at a constant speed along this part of the track.
The train is accelerating.

Figure 15

Explain how the train can be accelerating while travelling at a constant speed.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2020 AQA and its licensors. All rights reserved.

