AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 4 Physical sciences

Wednesday 12 June 2019 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

		Answer all questions in the spaces provided.
$\mathbf{0}$	$\mathbf{1}$	Figure $\mathbf{1}$ shows the forces acting on a skydiver falling through the air at a

Figure 1

$\mathbf{0}$	$\mathbf{1}$.
$\mathbf{1}$	What is the name of force \mathbf{A} ?

Tick (\checkmark) one box.

Electrostatic force

Friction

Magnetic force

Weight

0	1	2

What name is given to this velocity?
Tick (\checkmark) one box.

Braking velocity

Minimum velocity

Resultant velocity

Terminal velocity

0	1	3	The skydiver travels downwards at a speed of $56 \mathrm{~m} / \mathrm{s}$ for 40 s

Calculate the distance travelled during this time.
Use the equation:

$$
\text { distance travelled }=\text { speed } \times \text { time }
$$

\qquad
\qquad
\qquad
Distance travelled = \qquad m

Question 1 continues on the next page

| 0 | 1 | 4 |
| :--- | :--- | :--- | The total mass of the skydiver and equipment is 85 kg

Calculate the weight of the skydiver and equipment.
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
Weight = \qquad N

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$	The skydiver opens her parachute.

The velocity of the skydiver decreases.

Why does the velocity decrease when the parachute opens?
Tick (\checkmark) one box.

Air resistance decreases

Air resistance increases

Air resistance stays the same

Wer

Tick(V)

Air

| $\mathbf{0}$ | 2 |
| :--- | :--- | The National Grid supplies electricity to consumers in the UK.

$\mathbf{0}$	$\mathbf{2} .1$	$\mathbf{1}$

Choose answers from the box.

current	efficiency	energy	force	frequency

Step-up transformers are used to increase the potential difference, which causes a decrease in the \qquad .

This means that the temperature of the cables is lower, so there is less wasted \qquad .

This increases the \qquad of the power transmission process.

0	$\mathbf{2} .2$	$\mathbf{2}$ What is the frequency of the UK mains electricity supply?

Tick (\checkmark) one box.

20 Hz

50 Hz

230 Hz

20000 Hz

Electricity supplied to the National Grid is generated in different ways.
Table 1 shows the percentage of UK electricity generated from different energy
resources in 2017.

Energy resource	Percentage of UK electricity generated
Coal	7
Natural gas	41
Nuclear	X
Wind	12
Other resources	17

| $\mathbf{0}$ | 2 |
| :--- | :--- |, 3 Calculate value \mathbf{X} in Table 1.

\qquad
$X=$ \qquad \%

0	2	4
4	Explain why generating electricity using natural gas causes environmental problems.	

\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

| 0 | 2 | 5 |
| :--- | :--- | :--- | generate electricity.

Advantage \qquad
\qquad
Disadvantage \qquad
\qquad

A student investigated how the output potential difference of a model wind turbine was affected by the length of the turbine blades.

Figure 2 shows the equipment the student used.

Figure 2

Table 2 shows the student's results.

Table 2

Length of turbine blades in $\mathbf{~ c m}$	Output potential difference in volts			
	Test 1	Test 2	Test 3	Mean
8	0.13	0.12	0.11	0.12
6	0.15	0.14	0.16	0.15
4	0.27	0.25	0.23	0.25
2	0.26	0.30	0.12	\mathbf{X}

0	2	6
Calculate value \mathbf{X} in Table 2.		

Do not include the anomalous result.
\qquad
\qquad
$X=$ \qquad volts

$\mathbf{0}$	$\mathbf{2}$.
$\mathbf{7}$	What type of error caused the variation in this student's repeat readings?

Tick (\checkmark) one box.

Random error

Systematic error

Zero error \square

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2} .8$ | Another student did the same investigation but used a clamp stand to hold |
| :--- | :--- | :--- | the hairdryer.

Explain how this would improve the results.
\qquad
\qquad
\qquad
Turn over for the next question Turn over

Table 3

Ingredient	Mass in milligrams
Calcium carbonate	522
Magnesium carbonate	68
Sodium hydrogencarbonate	64
Other substances	146

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{1}$ Calculate the mass of the indigestion tablet in grams. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
Mass of tablet in milligrams $=$ \qquad
Mass of tablet in grams = \qquad

| $\mathbf{0}$ | $\mathbf{3} .2$ | $\mathbf{2}$ Calcium carbonate in the indigestion tablet reacts with hydrochloric acid in |
| :--- | :--- | :--- | the stomach.

Which gas is produced?
Tick (\checkmark) one box.

Carbon dioxide

Chlorine

Hydrogen

Oxygen

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{3}$ Sodium hydrogencarbonate has the chemical formula NaHCO_{3}

How many different elements are in sodium hydrogencarbonate?
Tick (\checkmark) one box.

3

4

5

6 \square

Question 3 continues on the next page

A student investigated the temperature change when different masses of calcium carbonate were reacted with $50 \mathrm{~cm}^{3}$ of hydrochloric acid.

Figure 3 shows the apparatus used.

Figure 3

This is the method used.

1. Add $50 \mathrm{~cm}^{3}$ of hydrochloric acid to a glass beaker.
2. Record the temperature of the hydrochloric acid.
3. Add 1 g of calcium carbonate to the hydrochloric acid.
4. Stir the mixture.
5. Record the highest temperature of the mixture.
6. Repeat steps 1-5 with different masses of calcium carbonate.

| 0 | 3 | 4 |
| :--- | :--- | :--- | Which two changes would increase the accuracy of the results?

Tick (\checkmark) two boxes.

Add a lid to the top of the glass beaker

Add indicator to the hydrochloric acid

Use $100 \mathrm{~cm}^{3}$ of hydrochloric acid

Use a polystyrene cup instead of the glass beaker

Use a thermometer with intervals of $5^{\circ} \mathrm{C}$ instead of $1^{\circ} \mathrm{C}$

0	3	5

Which two terms describe the mass of calcium carbonate in this investigation?
Tick (\checkmark) two boxes.

Categoric variable

Continuous variable

Control variable

Dependent variable

Independent variable

| 0 | 4 |
| :--- | :--- |\quad The country Iceland is a major producer of aluminium.

Aluminium is extracted from aluminium oxide using electrolysis.

Electrolysis requires a large amount of electricity.

Iceland generates all of its electricity from renewable resources.
$\begin{array}{lllll}0 & 4 & 1 & \text { Which of the following is a renewable resource? }\end{array}$
Tick (\checkmark) one box.

Coal

Crude oil

Hydroelectricity

Nuclear fuel

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ Why is aluminium produced in Iceland?

Tick (\checkmark) one box.

Conserves aluminium ore

Plentiful supply of cheap electricity \square

Uses up non-renewable resources \square

| 0 | 4 | 3 |
| :--- | :--- | :--- | Aluminium is extracted from aluminium oxide.

Complete the balanced equation for the reaction.

| 0 | $\mathbf{4} .4$ What type of reaction takes place when oxygen is removed from aluminium oxide? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

Combustion

Neutralisation

Reduction

Explain why aluminium ions move towards the negative electrode.
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 6 |
| :--- | :--- | :--- | aluminium atom.

How many electrons does each aluminium ion gain?

Number of electrons $=$ \qquad

0	4	$\mathbf{7}$

Oxygen is produced at the positive electrode.
The oxygen reacts with the carbon.

Complete the word equation for the reaction.
\qquad

| 0 | $\mathbf{4}$. | 8 |
| :--- | :--- | :--- | Why do the positive electrodes need to be replaced regularly?

\qquad
\qquad
\qquad

0	4	9
9		

The ceramic material has the following properties:

- high melting point
- unreactive.

Explain why each property is important when the ceramic material is used in the electrolysis of aluminium oxide.

High melting point \qquad
\qquad
\qquad
\qquad
Unreactive \qquad
\qquad
\qquad
\qquad
 box

0	5	A student investigated electrical circuits.

The student built a circuit with three resistors in series.

| 0 | 5 | 1 |
| :--- | :--- | :--- | Which circuit diagram shows a circuit containing three resistors in series?

Tick (\checkmark) one box.

\square

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ The student determined the total resistance of the circuit.

To determine the resistance, the student needed extra components in the circuit.

Which two components did the student need?
Tick (\checkmark) two boxes.

Ammeter

Diode

Fuse

Variable resistor

Voltmeter

Question 5 continues on the next page

The student built circuits with different numbers of resistors in series.
All the resistors used were identical.

| 0 | 5 |
| :--- | :--- | .3 The student switched the circuits off between readings.

Why did the student need to switch the circuits off?
Tick (\checkmark) one box.

So the battery could recharge

So the current would increase

So the potential difference would increase

So the temperature of the resistors would remain constant

Table 4 shows the student's results.
Table 4

Number of resistors	Total resistance in ohms
1	2.2
2	4.4
3	6.6
4	8.8
5	11.0
6	13.2

| 0 | 5 | 4 |
| :--- | :--- | :--- | Complete Figure 4 using data from Table 4.

You should:

- plot the rest of the results
- draw a line of best fit.

Figure 4

| 0 | 5 | 5 |
| :--- | :--- | :--- | The student concluded that there was a linear relationship between resistance and the number of resistors.

How do the results support this conclusion?
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{6}$ The student could have connected the resistors in parallel instead of in series. l . l

How would the total resistance of three resistors in parallel compare with the total resistance of three resistors in series?

Tick (\checkmark) one box.

Higher

Lower

The same

 box

| 0 | 6 |
| :--- | :--- | This question is about reversible reactions.

When blue hydrated copper sulfate is heated, white anhydrous copper sulfate and water are produced.

The equation for the reaction is:

$$
\begin{array}{ll}
\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons & \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\text { anhydrous }
\end{array}
$$

0	6	$\mathbf{1}$ How does the equation show that this is a reversible reaction?

A student investigated the forward reaction.
This is the method used.

1. Place an empty test tube on a balance.
2. Zero the balance with the test tube on it.
3. Add 1.26 g of hydrated copper sulfate to the test tube.
4. Heat the test tube and contents for 5 minutes.
5. Measure the mass of the solid left in the test tube.
6. Repeat steps 4-5 until the mass of the solid is constant.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{2}$ Figure 5 shows the test tube on the balance at the end of the investigation. |
| :--- | :--- | :--- | :--- |

Figure 5

Table 5 shows some of the student's results.

Table 5

Substance	Mass of substance in \mathbf{g}
Hydrated copper sulfate	1.26
Anhydrous copper sulfate	\mathbf{X}
Water	\mathbf{Y}

Determine the values \mathbf{X} and \mathbf{Y}.
Use Figure 5 and Table 5.
\qquad
\qquad
$X=$ g
$Y=$ \qquad

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ Why did the student keep heating the test tube and its contents until the mass |
| :--- | :--- | :--- | :--- | was constant?

Tick (\checkmark) one box.

To make more hydrated copper sulfate

To make sure all the water was removed \square
To melt the anhydrous copper sulfate

The student then investigated the reverse reaction.
The student added water to anhydrous copper sulfate.
This reaction is exothermic.
Figure 6 shows the apparatus used.
Figure 6

| 0 | 6 | 4 |
| :--- | :--- | :--- | What is an exothermic reaction?

Tick (\checkmark) one box.

A reaction where there is no energy change

A reaction that gives out energy to the surroundings

A reaction that takes in energy from the surroundings

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{5}$ What is the temperature shown on the thermometer in Figure 6?

Temperature $=$ \qquad ${ }^{\circ} \mathrm{C}$

0	6	6	The student measured the temperature during the reaction.

Complete the sentence.
Choose the answer from the box.
decreases increases stays the same

When water is added to anhydrous copper sulfate, the temperature \qquad .

| 0 | 7 | A student investigated how the horizontal distance travelled by a metal ball varied |
| :--- | :--- | :--- | with launch speed.

The student used an elastic band to launch the ball at different speeds from a bench.
Figure 7 shows the equipment the student used.
Figure 7

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{1}$ What piece of apparatus could the student use to measure the horizontal distance |
| :--- | :--- | :--- | travelled by the ball?

\qquad

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{3}$	Suggest one variable which should be kept the same for this investigation.

0	$\mathbf{7} .4$	Suggest one hazard to the student and one precaution to avoid the hazard.

Hazard \qquad
\qquad
Precaution \qquad

Question 7 continues on the next page

The student measured the horizontal distance travelled for a range of launch speeds.
Figure 8 shows the results.
Figure 8

| 0 | $\mathbf{7}$. | 5 |
| :--- | :--- | :--- | What range of launch speeds did the student use in the investigation?

From \qquad m / s to \qquad m / s

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{6}$ Predict the horizontal distance travelled for a launch speed of $2.5 \mathrm{~m} / \mathrm{s} \mathrm{s}$ |
| :--- | :--- | :--- | :--- | Use Figure 8.

Horizontal distance travelled = \qquad cm

0	$\mathbf{7}$.	$\mathbf{7}$	Write the equation which links kinetic energy, mass and speed.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	8	The mass of the ball was 0.0044 kg

Calculate the kinetic energy of the ball when the speed was $1.6 \mathrm{~m} / \mathrm{s}$
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Kinetic energy = J

0	8	Figure 9 shows a crane being used to lift a shipping container.

Figure 9

$\mathbf{0}$	$\mathbf{8} .1$	Write the equation which links distance, force and work done.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{2}$ The container was lifted a height of $14 \mathrm{~m}, ~$

The crane did 3430000 J of work on the container.

Calculate the force exerted by the crane on the container.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad N

$\mathbf{0}$	$\mathbf{8} .3$	$\mathbf{3}$ Write the equation which links power, time and work done.

\qquad
\qquad

$\mathbf{0}$	8.4
4	The power of the crane was 68600 W

Calculate the time taken for the crane to do 3430000 J of work.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
Time taken $=$ \qquad Unit \qquad

| 0 | 9 |
| :--- | :--- |\quad A student used an electric motor to lift a mass.

He investigated how the efficiency of the motor varied with the mass lifted.

Figure 10 shows the apparatus used.

Figure 10

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{1}$	Energy is transferred to the electric motor by the power supply.

Why is the energy transferred to the motor greater than the gravitational potential energy gained by the mass?

Tick (\checkmark) two boxes.

Energy is not conserved \square

Friction in the motor causes energy transfer to the surroundings

The temperature of the motor increases \square

Thermal energy from the surroundings is transferred to the mass \square

Wasted energy is destroyed \square

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{2}$ The student calculated the gravitational potential energy gained by different masses |
| :--- | :--- | :--- | as they were lifted.

The student used the equation:

$$
\text { gravitational potential energy }=\text { mass } \times 9.8 \times \text { height }
$$

Describe how the student could make accurate measurements to use in the calculations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 continues on the next page

| 0 | 9 | 3 |
| :--- | :--- | :--- | Write the equation which links efficiency, total input energy transfer and useful output energy transfer.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{9} .4$	The efficiency of the motor was 15%.

The student calculated that the useful output energy transfer was 1.20 J

Calculate the total input energy transfer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Total input energy transfer = \qquad J
$1 \mathbf{0}$ Some drinks containers are made from aluminium. Other drinks containers are made from a polymer called PET.

Both aluminium and PET can be recycled.

1	0	1
1	Figure 11 shows the recycling symbol for PET.	

Figure 11

PET

Suggest why this symbol is used on a PET bottle.
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0} .2$ | $\mathbf{2} 000000 \mathrm{~kg}$ of aluminium are used each year to make drinks cans. |
| :--- | :--- | :--- | :--- | 70% of these aluminium cans are recycled.

Calculate the mass of aluminium that is recycled each year from drinks cans.
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
Mass =
kg

Question 10 continues on the next page

| 1 | 0 | 3 | Table 6 gives information about the Life Cycle Assessments (LCAs) of two types of |
| :--- | :--- | :--- | :--- | drinks containers.

Table 6

The following table cannot be reproduced here due to third-party copyright restrictions.

Evaluate the use of aluminium compared with the use of PET for drinks containers.
Your answer should include supporting calculations.
\qquad

There are no questions printed on this page
Copyright information
For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a
separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is
available for free download from www.aqa.org.uk after the live examination series.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and
AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House,
Guildford, GU2 7 XJ .
Copyright \odot 2019 AQA and its licensors. All rights reserved.
outside the
box

