AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 4 Physical sciences

Wednesday 13 June 2018 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$	Crude oil is a mixture of hydrocarbons.

| $\mathbf{0}$ | $\mathbf{1}$ | .1 |
| :--- | :--- | :--- | Name the two elements in a hydrocarbon.

1
2 \qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$ What was crude oil formed from?

Tick one box.

Acids

Enzymes

Metals

Plankton

Figure 1 shows how crude oil is separated to produce different fuels.
Figure 1

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$ What is the name of this process?

Tick one box.

Combustion

Fractional distillation

Phytomining

Steam cracking \square

$\mathbf{0}$	$\mathbf{1}$.4	Why is the crude oil heated?

\qquad
\qquad

Table 1 shows some properties of the fuels produced by the process.
Table 1

Fuel	Number of carbon atoms in chain	Lowest boiling point in ${ }^{\circ} \mathbf{C}$	Highest boiling point in ${ }^{\circ} \mathbf{C}$
Petrol	$5-10$	20	200
Kerosene	$10-16$	180	260
Diesel oil	$14-20$	260	340
Fuel oil	$20-70$	370	600

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$ Which of the fuels has the largest boiling point range?

Tick one box.

Petrol

Kerosene

Diesel oil

Fuel oil \square

$\mathbf{0}$	$\mathbf{1}$.6	Plot the data for diesel oil from Table 1 on Figure 2.

Figure 2

Turn over for the next question

$\mathbf{0}$	$\mathbf{2} \quad$ This question is about Group 1 elements.

A teacher demonstrated the reaction of Group 1 elements with water.
Figure 3 shows the apparatus.
Figure 3

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ What name is given to Group 1 elements?

Tick one box.

Alkali metals

Halogens

Noble gases

Non-metals

0	2
$\mathbf{2}$	The teacher wore safety glasses and used tongs to handle the elements.

Suggest one other safety precaution the teacher should take.
\qquad
\qquad

Table 2 shows the teacher's results.
Table 2

Element	Observations
Lithium	- bubbles form - lithium moves slowly on surface
Sodium	- bubbles form - sodium moves quickly on surface - sodium melts to form a ball
Potassium	- bubbles form - potassium moves very quickly on surface - potassium melts to form a ball - a lilac flame is seen

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$ Describe the trend in reactivity in Group 1.

Give two observations from Table 2 which provide evidence for the trend.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

0	2	4
4	Rubidium is a Group 1 element.	

Rubidium is below potassium in the periodic table.
Suggest why the teacher did not demonstrate the reaction between rubidium and water.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .5$	$\mathbf{5}$ Complete the balanced equation for the reaction between sodium and water.

\qquad

| $\mathbf{0}$ | $\mathbf{2} .6$ |
| :--- | :--- | :--- |

Tick one box.

Sodium dioxide

Sodium hydrate

Sodium hydroxide

Sodium oxide

Table 3 shows the diameter of atoms of Group 1 elements.
Table 3

Element	Diameter of atom in nanometres
Lithium	0.304
Sodium	0.372
Potassium	\mathbf{X}
Rubidium	0.496
Caesium	0.530

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{7}$

$X=$ \qquad nanometres

$\mathbf{0}$	$\mathbf{2} .8$	$\mathbf{8}$

What is the diameter of a lithium atom in metres?
Tick one box.
$3.04 \times 10^{-8} \mathrm{~m}$

$3.04 \times 10^{-9} \mathrm{~m}$

$3.04 \times 10^{-10} \mathrm{~m}$

$3.04 \times 10^{-11} \mathrm{~m}$ \square

Figure 4 shows the use of lithium and lithium compounds in 2007 and 2017.
Figure 4

$\mathbf{0}$	$\mathbf{2}$.	9
Describe how the use of lithium and lithium compounds changed between		

You must include data from Figure 4 in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question Turn over

| $\mathbf{0}$ | $\mathbf{3}$ |
| :--- | :--- | A student investigated how the number of turns of wire on an electromagnet affects how many paper clips the electromagnet can pick up.

Figure 5 shows the apparatus used.
Figure 5

This is the method used.

1. Wrap wire around an iron nail.
2. Count the number of turns of wire.
3. Connect the wire to a battery to make the electromagnet.
4. Switch on the electromagnet and place it near the paper clips.
5. Count the number of paper clips picked up.
6. Repeat steps $1-5$ for different numbers of turns of wire.

Table 4 shows the results.
Table 4

Number of turns of wire on electromagnet	Number of paper clips picked up
10	1
25	2
40	4
55	5
60	6

$\mathbf{0}$	$\mathbf{3}$.1	Plot the data from Table 4 on Figure $6 . ~$

Draw a line of best fit.

Figure 6

| $\mathbf{0}$ | $\mathbf{3} .2$ | Describe the relationship between the number of paper clips picked up and the |
| :--- | :--- | :--- | number of turns on the electromagnet.

\qquad
\qquad

Question 3 continues on the next page
 Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

0	3	4
4	Describe one way the student's investigation could have been improved.	

Give a reason for the improvement.

Improvement \qquad
\qquad
Reason \qquad
\qquad

| 0 | 3 | 5 |
| :--- | :--- | :--- | the electromagnet?

Tick two boxes.

The colour of the insulation around the wire

The direction of the current through the wire

The distance from the electromagnet

The size of the paper clips

The size of the current through the wire

| 0 | 4 |
| :--- | :--- |\quad Figure 7 shows the main energy transfers from a house.

Figure 7

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ Which two changes to the house would reduce the rate of energy transfer?

Tick two boxes.

Add thermal insulation to the roof

Increase the temperature of the house

Decrease the thickness of the walls

Replace the single-glazed windows with double-glazed windows

Use materials with a higher thermal conductivity

The temperature inside the house is controlled using a thermostat.
The thermostat switches the heating on when the temperature drops below a chosen value.

The thermostat switches the heating off when the temperature rises above the chosen value.

Figure 8 shows how the temperature of the house changes over a 150 minute period.
Figure 8

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ For how many minutes was the heating switched on?

Number of minutes $=$ \qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$

What would happen to the time taken for the temperature to fall between points \mathbf{A} and \mathbf{B} ?

Tick one box.

The time taken decreases

The time taken increases

The time taken stays the same

| 0 | 4. | 4 |
| :--- | :--- | :--- | The householder has solar panels installed on the roof to heat water.

The householder can also heat water with an immersion heater which uses mains electricity.

Explain one advantage and one disadvantage of using a solar panel to heat water for the house, compared to the immersion heater.

Advantage \qquad
\qquad
\qquad
\qquad
Disadvantage \qquad
\qquad
\qquad
\qquad

Turn over for the next question

Figure 9 shows the apparatus used to pass a current through copper sulfate solution.
Figure 9

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ What is the name of component \mathbf{X} in Figure 9?

Tick one box.

Ammeter

Battery \square
Fuse

Switch \square

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ What is the name of the process happening in Figure 9?

Tick one box.

Combustion

Crystallisation

Distillation

Electrolysis

A student investigated how the concentration of copper sulfate solution affects the mass of copper deposited on the negative electrode.
$\begin{array}{lll}0 & 5 & 3\end{array}$ What are the independent and dependent variables in this investigation?
Draw one line from each type of variable to the correct description.

Description

Concentration of copper sulfate solution

Distance between electrodes

Mass of copper deposited

Time circuit is switched on for

Question 5 continues on the next page

Table 5 shows the student's results.
Table 5

Concentration of copper sulfate solution in $\mathbf{g} / \mathbf{d m}^{\mathbf{3}}$	Mass of copper deposited in grams
30	0.04
60	0.08
90	0.12
120	0.07
150	0.20

| 0 | 5 | 4 |
| :--- | :--- | :--- | The result for the concentration of $120 \mathrm{~g} / \mathrm{dm}^{3}$ is anomalous.

What may have caused the anomalous result?
Tick one box.

Some copper fell off the electrode

The circuit was switched on for too much time

The concentration of the solution was too high

| 0 | 5 | 5 |
| :--- | :--- | :--- | Use Table 5.

$\mathbf{0}$	$\mathbf{5} .6$	During the investigation copper ions move to the negative electrode.

Complete the sentence.
Choose the answer from the box.

a negative charge	a positive charge	no charge

Copper ions move to the negative electrode because copper ions have
\qquad .

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{7}$	Solid copper sulfate does not conduct electricity.

What is the reason for this?

Tick one box.

The charge on the ions is too high

The ions are too big \square

The ions are too small

The ions cannot move \square

Question 5 continues on the next page

| $\mathbf{0}$ | $\mathbf{5}$ | .8 | In a different investigation, a student passed a current of 0.6 A through copper sulfate |
| :--- | :--- | :--- | :--- | solution for 300 s

Calculate the charge flow through the solution.
Use the equation:

$$
\text { charge flow }=\text { current } \times \text { time }
$$

[2 marks]
\qquad
\qquad
\qquad
charge flow = coulombs

0	6	A student investigated the frictional force between an object and a surface.

The student used a string to pull a small wooden block across different surfaces.
The block was pulled at a constant speed in a straight line.
Pulling the block causes a tension force in the string.
The student kept the angle of the string the same each time.
Figure 10 represents the block being pulled across a piece of carpet.
Figure 10

0	6	1	Measure angle A on Figure 10.

Angle $\mathbf{A}=$ \qquad degrees

0	6.2
2	Complete the sentences.

Choose answers from the box.

controlled	dependent	scalar	valid	vector

Force has both magnitude and direction, so is a \qquad quantity.

A quantity with magnitude only is a \qquad quantity.

0	6	3	3

Name one other force acting on the block.

| 0 | 6 | 4 |
| :--- | :--- | :--- | When the student pulled the block with a constant force, the velocity of the block did not change.

What is the best explanation for this?
Tick one box.

Force is directly proportional to velocity

No work is done by the pulling force

The block is moving in a straight line

The resultant force on the block is zero

Question 6 continues on the next page

The student pulled the block along four different surfaces:

- cardboard
- carpet
- glass
- sandpaper.

0	6	5

1 \qquad
2 \qquad

Table 6 shows the results.
Table 6

Surface	Force to pull the block in newtons			Mean force in newtons
	Trial 1	Trial 2	Trial 3	
cardboard	1.4	1.6	1.5	1.5
carpet	2.5	3.0	3.9	3.2
glass	0.7	0.8	0.6	0.7
sandpaper	5.2	5.6	5.4	\mathbf{X}

0	6	6

\qquad
\qquad
$X=$
\qquad N

| 0 | 6 | .7 |
| :--- | :--- | :--- | Which surface produced the lowest friction force?

Table 6 shows theresuls.

Table 6

0	$\mathbf{7}$	Astronauts have been to the Moon.

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Astronauts moved around the surface of the Moon in a lunar rover.

Figure 11 shows a lunar rover.
Figure 11

The batteries on the lunar rover provided a potential difference of 36 V
The total charge stored in the batteries was 870000 C
Calculate the maximum energy that could have been transferred from the batteries.
Use the equation:
energy transferred $=$ charge flow \times potential difference
\qquad
\qquad
\qquad
\qquad
Maximum energy transferred $=$ J

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ Not all of the energy from the batteries was usefully transferred to the kinetic energy |
| :--- | :--- | :--- | :--- | of the lunar rover.

Explain why.
\qquad
\qquad
\qquad
\qquad

The astronauts collected rock samples from the Moon.
Scientists analysed the percentages of elements in Moon rock and Earth rock.
Table 7 shows the results.
Table 7

Element	Percentage in Moon rock	Percentage in Earth rock
Aluminium	8	8
Iron	13	5
Oxygen	42	47
Silicon	X	28
Other elements	10	12

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Calculate value \mathbf{X} in Table 7. |
| :--- | :--- | :--- | :--- |

$X=$ \qquad \%

0	$\mathbf{7} .4$	Give one similarity and one difference between Moon rock and Earth rock.

Use Table 7.

Similarity \qquad
\qquad
Difference \qquad
\qquad

0	$\mathbf{7} .5$
5	

Scientists now believe that the Moon formed after a collision between the Earth and a small planet.

This new idea came from the study of Moon rocks.
Why do scientific theories sometimes change?
Tick one box.

Scientists agree that the existing theory is old-fashioned \square
Scientists change their theories to make the theories more popular \square
Scientists decide that the new theory is more exciting \square
Scientists discover new evidence which the existing theory cannot explain \square

Question 7 continues on the next page

| 0 | $\mathbf{7} .6$ | Write down the equation which links gravitational field strength, gravitational potential |
| :--- | :--- | :--- | energy, height and mass.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{7}$ When the astronauts left the Moon, they used a spacecraft with a mass of 2150 kg |
| :--- | :--- | :--- | :--- |

Calculate the height reached by the spacecraft at the point where it had a gravitational potential energy of 86000000 J

The gravitational field strength of the Moon is $1.6 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Height $=$ \qquad m

0	8	A light dependent resistor (LDR) is connected in a circuit.

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ Draw the circuit symbol for an LDR.

| $\mathbf{0}$ | $\mathbf{8}$. 2 A student investigated the relationship between current and potential difference for |
| :--- | :--- | :--- | an LDR.

How should the student have connected the ammeter and voltmeter in the circuit?
Tick one box.

Ammeter	Voltmeter
in parallel with LDR	in parallel with LDR
in parallel with LDR	in series with LDR
in series with LDR	in parallel with LDR
in series with LDR	in series with LDR

Question 8 continues on the next page

Figure 12 shows a sketch graph of the student's results.
The LDR was in a constant bright light.

Figure 12

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ The student concluded that the current in the LDR is inversely proportional to the |
| :--- | :--- | :--- | :--- | potential difference across the LDR.

Explain why the student's conclusion is incorrect.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8} .4$	The student repeated the investigation with the LDR in constant dark conditions.

Sketch on Figure 12 the graph for the LDR in constant dark conditions.

The LDR was placed near a light source.
The following results were recorded:

$$
\begin{aligned}
& \text { potential difference }=5.50 \mathrm{~V} \\
& \text { current }=12.5 \mathrm{~mA}
\end{aligned}
$$

| $\mathbf{0}$ | $\mathbf{8} .5$ | $\mathbf{5}$ Write down the equation that links current, potential difference and resistance. |
| :--- | :--- | :--- | :--- |

\qquad

$\mathbf{0}$	$\mathbf{8} .6$	Calculate the resistance of the LDR.

\qquad
\qquad
\qquad
\qquad
\qquad
Resistance $=$ Ω

0	9	Supermarket carrier bags can be made from poly(ethene).

0	9	1

The structure of ethene is:

Complete the structure of poly(ethene).
$\left(\begin{array}{ll}H & H \\ C & C \\ H & H\end{array}\right)_{n}$

There are two types of poly(ethene): HD poly(ethene) and LD poly(ethene).

0	9	2
2		

Figure 13

HD poly(ethene)

LD poly(ethene)

Describe the differences in the structure and arrangement of the polymer chains in the two types of poly(ethene).
\qquad
\qquad
\qquad
\qquad

Question 9 continues on the next page

A student investigated how poly(ethene) extends when a force is applied.

| 0 | 9 | 3 |
| :--- | :--- | :--- | the force applied.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 14 shows the results for HD poly(ethene) and LD poly(ethene).
Figure 14

| 0 | 9.4 | Give two comparisons between the results for HD poly(ethene) and for |
| :--- | :--- | :--- | LD poly(ethene).

Use Figure 14.

1 \qquad
\qquad
2 \qquad
\qquad

| 0 | $\mathbf{9} .5$ | Carrier bags in supermarkets used to be provided free. Supermarkets now make |
| :--- | :--- | :--- | customers pay for carrier bags.

When they were free, 8.0 billion new carrier bags were used each year.
After supermarkets started making customers pay for carrier bags, the use of new bags dropped by 85%

Calculate how many carrier bags are now used each year.
\qquad
\qquad
\qquad
Number of bags = \qquad

Question 9 continues on the next page

| $\mathbf{0}$ | $\mathbf{9} .6$ There are two types of carrier bag in common use: |
| :--- | :--- | :--- |

- disposable bags
- bags for life.

Bags for life can be returned to the supermarket when no longer usable.
The supermarket replaces the bag for life free of charge and arranges for the bag to be recycled.

Table 8 shows data from a life cycle assessment (LCA) for the two types of carrier bag.

Table 8

	Disposable bag	Bag for life
Type of polymer	HD poly(ethene)	LD poly(ethene)
Raw material from which polymer is made	Crude oil	Crude oil
Mass of waste material per bag from production in grams	0.42	0.17
Mass of carbon dioxide emitted per bag during production and transport in grams	1.6	6.9
Mean number of times used	1	6
Possible disposal methods	Lncineration Recycling	Landfill Recineration Recycling

Evaluate the use of each type of carrier bag.
Use data from Table 8 and your own knowledge.
\qquad

END OF QUESTIONS

There are no questions printed on this page
Copyright information
For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a
separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is
available for free download from www.aqa.org.uk after the live examination series.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and
aQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House,
Guildford, GU2 7XJ.
Copyright © 2018 AQA and its licensors. All rights reserved.
outside the
box

