AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE
 COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 4 Physical Sciences

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Tick (\checkmark) two boxes

Coal \square

Nuclear
\square

Wave
\square

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Why has the electricity demand per person in the UK decreased over the past |
| :--- | :--- | :--- | :--- | five years?

Tick (\checkmark) one box.

Energy-efficient appliances are being bought.

Power stations are generating more electricity. \square

The number of electric cars in the UK has increased. \square

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Which energy resource releases carbon dioxide when burnt? |
| :--- | :--- | :--- | Tick (\checkmark) one box.

Crude oil

Hydroelectric

Solar

Uranium

Question 1 continues on the next page

Some heating appliances burn natural gas.
Burning natural gas produces a third of the UK's carbon dioxide emissions.
Scientists are investigating whether these heating appliances can burn a mixture of hydrogen gas and natural gas.
 Calculate the percentage by mass of hydrogen gas in this mixture.
\qquad
\qquad
\qquad
Percentage by mass of hydrogen gas = \qquad \%

0	1	5
5	Burning a mixture of hydrogen gas and natural gas releases less carbon dioxide	

Explain one advantage of releasing less carbon dioxide into the atmosphere.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ Ten-pin bowling is a game where a ball is rolled along the floor to knock over some |
| :--- | :--- | wooden pins.

Figure 1 shows a person ten-pin bowling.

Figure 1

The mass of the ball was 5.5 kg .

Calculate the kinetic energy of the ball.
Use the equation:

$$
\text { kinetic energy }=0.5 \times \text { mass } \times(\text { speed })^{2}
$$

\qquad
\qquad
\qquad
Kinetic energy = \qquad J

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$ When the ball collides with the pins, energy is conserved. l

What is meant by 'conservation of energy' when the ball collides with the pins?
Tick (\checkmark) one box.

The gravitational potential energy of the pins is the same before and after the collision.
\square

The kinetic energy of the ball is the same before and after the collision.

The total energy of the ball and pins is the same before and after the collision.

A machine returns the ball to the person.
$\begin{array}{lllll}0 & 2 & 3 & \text { The machine takes } 25.0 \mathrm{~s} \text { to return the ball to the person. }\end{array}$
The useful power output of the machine is 660 W .

Calculate the work done by the machine in returning the ball to the person.
Use the equation:

$$
\text { work done }=\text { power } \times \text { time }
$$

\qquad
\qquad
\qquad
Work done $=$ \qquad J

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{4}$ The machine has an efficiency of 0.60 |
| :--- | :--- | :--- | :--- |

The useful power output of the machine is 660 W .

Calculate the total power input to the machine.
Use the equation:

$$
\text { total power input }=\frac{\text { useful power output }}{\text { efficiency }}
$$

\qquad
\qquad
\qquad
Total power input = \qquad W

0	2	5	5

What is the name of the force caused by the moving parts rubbing together?
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. 6 What happens to the wasted energy from the machine? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

The wasted energy cools the surroundings.

The wasted energy heats the surroundings. \square

The wasted energy is destroyed. \square

| 0 | 3 | This question is about the reaction between hydrochloric acid and |
| :--- | :--- | :--- | sodium hydroxide solution.

A student investigated the effect of changing the volume of sodium hydroxide solution on the temperature change during the reaction.

This is the method used.

1. Measure $30 \mathrm{~cm}^{3}$ of hydrochloric acid into a polystyrene cup.
2. Measure the temperature of the hydrochloric acid.
3. Add $5 \mathrm{~cm}^{3}$ of sodium hydroxide solution.
4. Stir the mixture.
5. Measure the highest temperature the mixture reaches.
6. Repeat steps 1 to 5 three more times and calculate the mean temperature change.
7. Repeat steps 1 to 6 with different volumes of sodium hydroxide solution.

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{1}$ What two pieces of equipment should be used in this investigation? |
| :--- | :--- | :--- |

Tick (\checkmark) two boxes.

Balance

Measuring cylinder \square

Ruler

Stopclock

Thermometer \square

Table 1

Temperature change in $^{\circ} \mathrm{C}$				
Test 1	Test 2	Test 3	Test 4	Mean
7.0	7.2	6.6	6.8	X

Calculate value \mathbf{X} in Table 1.
[2 marks]
\qquad
\qquad
\qquad
$X=$ \qquad ${ }^{\circ} \mathrm{C}$
$\begin{array}{lllll}0 & \mathbf{3} & . & 3 & \text { Which type of error is reduced by repeating the tests and calculating the mean? }\end{array}$ Tick (\checkmark) one box.

Random

Systematic

Zero

Question 3 continues on the next page

A different student did the same investigation.

Figure 2

Figure 2 shows the results.

Mean temperature change in ${ }^{\circ} \mathrm{C}$

0	3	4
4		

Use Figure 2.
[1 mark]
Mean temperature change $=$ \qquad ${ }^{\circ} \mathrm{C}$

0	3	5	Give one conclusion from the results in Figure 2.

\qquad
\qquad
\qquad

Question 3 continues on the next page

| 0 | $\mathbf{3}$ | 6 |
| :--- | :--- | :--- | The reaction between hydrochloric acid and sodium hydroxide is exothermic.

Exothermic reactions give out energy.

Which reaction profile shows an exothermic reaction?
Tick (\checkmark) one box.

Progress of reaction

Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{Na}=23 \quad \mathrm{O}=16 \quad \mathrm{H}=1$
\qquad
\qquad
\qquad
Relative formula mass =
Relative formula mas $=$
\qquad

| 0 | 4 |
| :--- | :--- | This question is about electrolysis.

A student investigated the electrolysis of aqueous solutions using inert electrodes.
Figure 3 shows the apparatus used.

Figure 3

$\mathbf{0}$	$\mathbf{4}$	l
$\mathbf{1}$	The electrodes are made of graphite.	

Which element is graphite a form of?
Tick (\checkmark) one box.

Aluminium

Carbon

Copper

Silicon

0	$\mathbf{4}$	$\mathbf{2}$ The electrodes are inert.

What does 'inert' mean?
[1 mark]
\qquad
\qquad

0	$\mathbf{4}$	$\mathbf{3}$ What is meant by an 'aqueous solution'?

[1 mark]

Question 4 continues on the next page

The student electrolysed four aqueous solutions.
Table 2 shows some of the results.

Table 2

Aqueous solution	Product at negative electrode	Product at positive electrode
Copper bromide		bromine
Copper chloride	copper	chlorine
Sodium bromide	hydrogen	
Sodium sulfate		oxygen

| 0 | 4 |
| :--- | :--- | .4 Complete Table 2.

Choose answers from the box.
[3 marks]

| bromine chlorine copper | hydrogen | oxygen | sodium |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 0 | $\mathbf{4}$ |
| :--- | :--- | $\mathbf{5}$ An aqueous solution of copper chloride was electrolysed.

Give one observation seen at the:

- negative electrode
- positive electrode.

Use Table 2.
[2 marks]
Negative electrode \qquad
\qquad
Positive electrode \qquad
\qquad

0	4	.6 What would you use to test for chlorine gas?

Tick (\checkmark) one box.
A burning splint \square

A glowing splint \square

Damp litmus paper \square

0	$\mathbf{4}$.7

Choose the answer from the box.
[1 mark]

gaseous molten solid

Copper chloride can conduct electricity when in aqueous solution or when \qquad .

.

| 0 | 5 |
| :--- | :--- | Figure 4 shows a student holding a magnet near another magnet.

Figure 4

$\mathrm{N} \quad \mathrm{S}$

$\mathbf{0}$	$\mathbf{5}$.
1	Which of the following describes the force between the two magnets?

An electrostatic force \square

A frictional force

A non-contact force

Question 5 continues on the next page

| 0 | 5 |
| :--- | :--- | $\mathbf{2}$ Figure 5 shows three metal bars, 1, 2 and 3.

Two of the bars are permanent magnets and the other bar is made of iron.
The student recorded whether the bars were attracted or repelled when different ends were placed near to each other.

Figure 5

Attract

Repel

Attract

Bar 3

Which metal bars are magnets?
Tick (\checkmark) one box.

Bars 1 and 2

Bars 2 and 3

Bars 3 and 1 \square

Give a reason for your answer.
\qquad
\qquad

| 0 | 5 | 3 |
| :--- | :--- | :--- | When there is a current in a wire there is a magnetic field around the wire. Which diagram shows the magnetic field around the wire?

Question 5 continues on the next page

Figure 6 shows the equipment a student used to investigate the strength of an electromagnet.

Figure 6

This is the method used.

1. Wrap insulated wire around an iron bar.
2. Connect the wire to a battery to make an electromagnet.
3. Hold paperclips near to the bottom of the electromagnet.
4. Count the number of paper clips the electromagnet picks up.
5. Repeat steps 3 and 4 for different values of current.

| 0 | 5 |
| :--- | :--- | .4 Give one way the size of the current in the circuit in Figure $\mathbf{6}$ can be changed.

[1 mark]
\qquad
\qquad

Figure 7 shows the results.
Figure 7

0	5	$\mathbf{5}$ Draw a line of best fit on Figure 7.

| $\mathbf{0}$ | $\mathbf{5}$ | .6 The student used an interval of 2 A for current in the investigation. |
| :--- | :--- | :--- | Explain why the student should have used a smaller interval for current.

\qquad
\qquad
\qquad
\qquad

Question 5 continues on the next page

$\mathbf{0}$	$\mathbf{5}$.7	Figure 8 shows an electromagnet being used to separate metals to be recycled.

Figure 8

Explain the advantage of using an electromagnet instead of a permanent magnet.
[2 marks]
\qquad
\qquad
\qquad
\qquad

| 0 | 6 |
| :--- | :--- | This question is about magnesium oxide.

0	6	.

Tick (\checkmark) one box.

Compound

Element

Mixture

0	6.

Balance the equation for the reaction.

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \ldots \mathrm{MgO}(\mathrm{~s})
$$

0	6	3	

Question 6 continues on the next page

Turn over

A student reacted magnesium with oxygen.
Figure 9 shows the apparatus used.

Figure 9

This is the method used.

1. Measure the mass of the empty crucible and lid.
2. Put magnesium into the crucible.
3. Measure the mass of the crucible, lid and magnesium.
4. Heat the crucible strongly.
5. Lift the lid occasionally.
6. Heat until the magnesium stops glowing.
7. Measure the mass of the crucible, lid and magnesium oxide.

| 0 | 6 |
| :--- | :--- | .4 Give one safety precaution the student should use.

[1 mark]
\qquad
\qquad

0	6	5

Suggest where the oxygen comes from.
[1 mark]
\qquad

0	6	6

Why did lifting the lid allow the magnesium to react completely?
\qquad
\qquad

Question 6 continues on the next page

Table 3 shows the results.
Table 3

	Mass in g
Crucible and lid	48.0
Crucible, lid and magnesium	48.3
Crucible, lid and magnesium oxide	48.5

$\mathbf{0}$	6	$\mathbf{7}$	Calculate the mass of magnesium put into the crucible.

Use Table 3.
[1 mark]
\qquad
Mass of magnesium $=$

0	6	8	Calculate the mass of oxygen that reacted with the magnesium.

Use Table 3.
[1 mark]
\qquad
Mass of oxygen = g

| 0 | 7 |
| :--- | :--- | Figure 10 shows a cyclist on a straight, level road.

Figure 10

Forward force

0	$\mathbf{7}$	$\mathbf{1}$	Complete the sentences.

Choose answers from the box.
[2 marks]

decreases	stays the same	increases

When the forward force is greater than the air resistance force, the speed of the cyclist \qquad .

When the forward force is equal to the air resistance force, the speed of the cyclist \qquad .

Question 7 continues on the next page

 time of 2.5 s .

Calculate the acceleration of the cyclist.
Use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}
$$

Choose the unit from the box.

J / kg	m / s	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{~N} / \mathrm{kg}$

\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad
Unit \qquad

The cyclist travelled at this speed for 60 s .

Calculate the distance travelled by the cyclist during this time.
Use the equation:

$$
\text { distance travelled }=\text { speed } \times \text { time }
$$

\qquad
\qquad
\qquad
Distance travelled = \qquad m

| 0 | $\mathbf{7}$ | $\mathbf{4}$ The maximum speed of this cyclist is much higher than the typical mean speed of |
| :--- | :--- | :--- | a cyclist.

What is the typical mean speed of a cyclist?
[1 mark]
Tick (\checkmark) one box.
$1.5 \mathrm{~m} / \mathrm{s}$ \square $3.0 \mathrm{~m} / \mathrm{s}$ \square $6.0 \mathrm{~m} / \mathrm{s}$ \square

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{5}$ Give two factors that would decrease the maximum speed of a cyclist on a journey.

[2 marks]

1 \qquad

2 \qquad

0	7	6
6		

Calculate the distance travelled while decelerating.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Distance travelled = \qquad m

0	8	Figure 11 shows a steam engine pulling a train.

Figure 11

| $\mathbf{0}$ | $\mathbf{8}$ | . $\mathbf{1}$ One type of steam engine burns coal as the fuel source. |
| :--- | :--- | :--- | :--- | :--- |

The energy from the coal is used to accelerate a train.

Describe how the energy stores of the coal and the train change as the train accelerates.
\qquad
\qquad
\qquad
\qquad

Tick (\checkmark) one box.
$E=\frac{P}{t} \quad \square$
$P=\frac{E}{t} \quad \square$

$P=\frac{E^{2}}{t}$ \square

0	8	3
3	A steam engine has a power output of 8000 W .	

Calculate the energy output of the steam engine in 3600 seconds.
\qquad
\qquad
\qquad
\qquad
\qquad
Energy output = \qquad J

| $\mathbf{0}$ | $\mathbf{8} .4$ | In the 18th century the power output of steam engines was measured in a unit |
| :--- | :--- | :--- | called 'horsepower'.

Suggest why the unit of horsepower was used.
\qquad
\qquad
\qquad
\qquad

| 0 | 9 |
| :--- | :--- |\quad This question is about the reaction between copper carbonate and nitric acid.

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{1}$	Carbon dioxide is produced when copper carbonate reacts with nitric acid.

Give the test for carbon dioxide gas.
Give the result of the test if carbon dioxide is present.

Test \qquad
\qquad
Result \qquad
\qquad
$\begin{array}{llll}0 & 9 & 2 & \text { The word equation for the reaction between copper carbonate and nitric acid is: }\end{array}$ copper carbonate + nitric acid $\longrightarrow \mathbf{X}+\mathbf{Y}+$ carbon dioxide

Name the products \mathbf{X} and \mathbf{Y}.

X \qquad
Y \qquad
\qquad nitric acid.

Describe a method to show the effect of changing the temperature of the nitric acid on the rate of reaction.

Your method should include measuring the volume of carbon dioxide gas produced.
[6 marks]

Question 9 continues on the next page

0	9	4
4		

'An increase in temperature increases the rate of reaction.'

The student's conclusion was correct.

Explain why an increase in temperature increases the rate of reaction.
You should refer to particles and collisions in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 12 shows the equipment a student used to investigate the effect of weight on the distance a box slides.

Figure 12

This is the method used.

1. Put a 1.0 N weight in the box.
2. Pull the box backwards until it reaches the start line, extending the rubber band by 10 cm .
3. Release the box.
4. When the box stops moving, measure the distance the box has slid using the metre rule.
5. Repeat steps 2 to 4 using a weight of 2.0 N and then 3.0 N .

$\mathbf{1}$	$\mathbf{0} \cdot \mathbf{1}$ Identify the variables in the investigation. ${ }^{2}$.

Independent variable \qquad
Dependent variable \qquad

| 1 | 0 | -2 |
| :--- | :--- | :--- | The extension of the rubber band was a control variable in the investigation. Suggest one other control variable in the investigation.

\qquad
\qquad

Table 4

Weight inside box in N	Distance the box slides in cm			
	Trial 1	Trial 2	Trial 3	Mean
1.0	12.6	13.1	13.4	13.0

What was the uncertainty in the distance measurements when the weight inside the box was 1.0 N ?

Tick (\checkmark) one box.
$\pm 0.1 \mathrm{~cm} \square \pm 0.4 \mathrm{~cm} \square \pm 0.8 \mathrm{~cm} \square \pm \mathrm{cm} \square$

Question 10 continues on the next page

The rubber band behaves like a spring with a spring constant of $36 \mathrm{~N} / \mathrm{m}$.

Calculate the elastic potential energy stored by the rubber band.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Elastic potential energy = \qquad J
$\mathbf{1} 0.5$ What is the maximum possible value for the kinetic energy of the box?

Maximum possible kinetic energy = J

1	0	6	

Table 5

Weight inside box in N	Distance the box slides in cm			
	Trial 1	Trial 2	Trial 3	Mean
1.0	12.6	13.1	13.4	13.0
2.0	10.4	9.4	10.0	9.9
3.0	7.9	7.3	6.8	7.3

Describe improvements the student could make to the method.
Use information from:

- Figure 12, on page 40
- Table 5.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	...

mation

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please

Copyright © 2021 AQA and its licensors. All rights reserved.

