$A Q A B$

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 3 Physical sciences

Friday 7 June 2019

Afternoon
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

A student investigated the rate of the reaction between magnesium and hydrochloric acid.

The reaction produced a gas.

Carbon dioxide

Hydrogen

Question 1 continues on the next page

$\mathbf{0}$	$\mathbf{1}$.2	Figure 1 shows the apparatus used.

Figure 1

What is the piece of equipment labelled \mathbf{A} ?
Tick (\checkmark) one box.

Conical flask

Delivery tube \square
Glass beaker

Test tube \square

$\mathbf{0}$	1	3	The student saw that a chemical reaction was taking place.

Give two observations that would show a chemical reaction was taking place.
[2 marks]
1
\qquad
2 \qquad
\qquad

0	1	4
4		

The student measured the volume of gas collected every 20 seconds for 2 minutes.
The readings for the volume of gas were $24 \mathrm{~cm}^{3}, 44 \mathrm{~cm}^{3}, 59 \mathrm{~cm}^{3}, 70 \mathrm{~cm}^{3}, 76 \mathrm{~cm}^{3}$ and $79 \mathrm{~cm}^{3}$

Complete Table 1.

Table 1

Time in seconds	
0	0
	24
	44
	59
	70
	76
	79

Question 1 continues on the next page

$\mathbf{0}$	$\mathbf{1}$	E
$\mathbf{5}$	How could the student make the reaction faster?	

Tick (\checkmark) one box.

Dilute the hydrochloric acid \square
Replace magnesium ribbon with magnesium powder \square
Use a larger measuring cylinder

Use a smaller volume of hydrochloric acid
\square
\square

The student repeated the investigation at a higher temperature.
Figure 2 shows the results.
Figure 2

0	1.	6

Use the equation:

$$
\text { mean rate of reaction }=\frac{\text { volume of gas formed }}{\text { time taken }}
$$

Give the unit.
Choose the unit from the box.

$\mathrm{cm}^{3} / \mathrm{s}$	g / s	$\mathrm{s} / \mathrm{cm}^{3}$

\qquad
\qquad
\qquad
\qquad
Mean rate of reaction = \qquad Unit \qquad

| 0 | 1. | $\mathbf{7}$ Determine the time at which the reaction finished and no more gas was produced. |
| :--- | :--- | :--- | Use Figure 2.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{8}$ Why does the rate of reaction increase when the temperature is higher?

Tick (\checkmark) two boxes.

Concentration of particles increases

Particles collide more often

Particles have more energy

Particles increase in size

Particles move more slowly

$\mathbf{0}$	$\mathbf{2}$	A 1 kilogram mass is made from a mixture of metal \mathbf{A} and metal \mathbf{B}..$~$

Figure 3 represents part of the structure of the 1 kilogram mass.

Figure 3

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ What is the ratio of metal \mathbf{A} atoms to metal \mathbf{B} atoms in Figure 3?

\qquad : \qquad

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ What is a mixture of metals called?

Tick (\checkmark) one box.

A polymer

A salt

An alkene

An alloy

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	A silicon sphere has a mass of 1 kilogram.

The largest impurity in the silicon sphere is copper.
There are $7 \times 10^{-5} \mathrm{~g}$ of copper in the silicon sphere.

What is the mass of copper in kilograms in the silicon sphere?
Tick (\checkmark) one box.
$7 \times 10^{-2} \mathrm{~kg}$

$7 \times 10^{-4} \mathrm{~kg}$ \square
$7 \times 10^{-6} \mathrm{~kg}$

$7 \times 10^{-8} \mathrm{~kg}$ \square

| 0 | 2 |
| :--- | :--- | :--- | .4 An atom of silicon has 14 electrons.

What is the electronic structure of silicon?
Tick (\checkmark) one box.

2,4,8

2,8,4

4,2,8

8,4,2 \square

Question 2 continues on the next page

Silicon dioxide is a compound of silicon and oxygen.
Figure 4 represents part of the giant structure of silicon dioxide.

Figure 4

0	$\mathbf{2}$.	$\mathbf{5}$ Which two words describe the bonding in silicon dioxide?

Tick (\downarrow) two boxes.

Covalent

Intermolecular

Ionic \square
Metallic

Strong

$\mathbf{0}$	$\mathbf{2} .6$	How many silicon atoms are bonded to each oxygen atom in silicon dioxide?

Use Figure 4.

Tick (\checkmark) one box.
1

2

3

4

| $\mathbf{0}$ | $\mathbf{2} .7$ Which symbol represents the state of silicon dioxide at room temperature? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.
(aq)

(g) \square
(I)

(s)

0	3	Some new cars have an electric motor that is powered by a battery.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$
A battery supplies direct current.		

What is direct current?
Tick (\checkmark) one box.

Current that always passes in the same direction \square

Current that changes direction 50 times each second \square
Current that does not have a direction \square

There are different types of battery available.
Table 2 shows the maximum distance a car can travel before the battery needs recharging.

Table 2

Type of battery	Maximum distance in km
Lead-acid	130
Lithium-ion	480
Nickel-metal hydride	200

0	3	2

You should:

- label the x-axis
- label the y-axis
- plot the data from Table 2.

Figure 5

| 0 | 3 | 3 |
| :--- | :--- | :--- | before the battery needs recharging.

Determine the distance the car travels.
\qquad
\qquad
\qquad
Distance $=$ \qquad km

| $\mathbf{0}$ | $\mathbf{3} .4$ | A lithium-ion battery is put on charge for 1800 s |
| :--- | :--- | :--- | :--- |

The current is 40 A
Calculate the total charge flow during this time.
Use the equation:

$$
\text { charge flow }=\text { current } \times \text { time }
$$

\qquad
\qquad
\qquad
Charge flow = \qquad C

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{5}$ The driver of a car saw an obstacle in the road. He applied the brakes until the |
| :--- | :--- | :--- | car stopped.

The thinking distance was 9.0 m
The braking distance was 13.5 m

Calculate the stopping distance of the car.
\qquad
\qquad m

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{6}$ The driver had been drinking alcohol. The car had worn brakes. |
| :--- | :--- | :--- | :--- |

Explain why these factors would increase the stopping distance of the car.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 4 |
| :--- | :--- |\quad This question is about hydrocarbons.

Figure 6 represents hydrocarbon \mathbf{A}.

Figure 6

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | Complete the chemical formula of hydrocarbon \mathbf{A}.

C_{5}

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ What do the links between the atoms in Figure 6 represent? |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

Question 4 continues on the next page

| 0 | 4 |
| :--- | :--- | $\mathbf{3}$ Hydrocarbon \mathbf{A} is a fuel. Hydrocarbon \mathbf{A} is completely combusted in air.

Which two substances are produced?

Tick (\checkmark) two boxes.

Carbon dioxide

Ethene

Nitrogen

Oxygen

Water

Some students investigated how changing the temperature of a hydrocarbon affects the viscosity of the hydrocarbon.

Figure 7 shows the apparatus used.
Figure 7

The students recorded the time it took for $25 \mathrm{~cm}^{3}$ of the hydrocarbon to flow through the hole in the viscometer.

| 0 | $\mathbf{4}$ | $\mathbf{4}$ Table 3 shows a student's results at $60^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |

Table 3

Temperature in ${ }^{\circ} \mathrm{C}$	Time to flow through the viscometer in s				
	Trial 1	Trial 2	Trial 3	Trial 4	Mean
	21	20	24	23	X

Calculate the mean value \mathbf{X}.
\qquad
\qquad
Mean value $\mathbf{X}=$ S

Another student investigated a different hydrocarbon.
Table 4 shows the results.
Table 4

Temperature in ${ }^{\circ} \mathrm{C}$	Time to flow through the viscometer in s
20	66
25	50
30	40
40	30
50	25

0	4	5

You should:

- plot the data from Table 4
- draw a line of best fit.

Figure 8

0	4	6

\qquad
\qquad
 The lower the viscosity, the faster the substance flows.

Complete the sentence.
Choose the answer from the box.

As the temperature increases, the viscosity of the hydrocarbon \qquad .

Turn over for the next question

| 0 | 5 |
| :--- | :--- | This question is about copper sulfate.

| 0 | 5 | 1 |
| :--- | :--- | :--- | The formula of copper sulfate is CuSO_{4}

Table 5 shows information about the atoms in copper sulfate.
Complete Table 5.

Table 5

Element	Symbol	Relative number of atoms in CuSO_{4}
	Cu	
Sulfur		
		4

Copper oxide and sulfuric acid react to produce copper sulfate and water.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{2}$ Complete the word equation for this reaction.

\qquad $+$ \qquad \longrightarrow \qquad + water

0	5	3

Tick (\checkmark) one box.

A base

A metal

A salt

An acid

Question 5 continues on the next page

A student planned to make blue copper sulfate crystals.
This is the method the student used.

1. Add $25 \mathrm{~cm}^{3}$ of dilute sulfuric acid to a conical flask.
2. Gently warm the dilute sulfuric acid.
3. Add 2 g of black copper oxide to the dilute sulfuric acid.
4. Stir the mixture.
5. Evaporate some of the water from the mixture using an electric heater.
6. Leave the mixture to cool.

Not all the copper oxide reacted. The student did not remove the excess copper oxide.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{4}$ What would the product look like after step 6?

Tick (\checkmark) one box.

Black powder only \square
Blue crystals and black powder

Blue crystals only

Blue solution only \square

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{5}$ The student should have filtered the mixture after step 4.

Draw a diagram of the apparatus the student could use.
You should label:

- the pieces of equipment used
- where the excess copper oxide collects.

$\mathbf{0}$	$\mathbf{5} .6$	6

- 2 g of copper oxide
- $25 \mathrm{~cm}^{3}$ of dilute sulfuric acid?

Draw one line from each measurement to the most suitable piece of equipment.

Measurement

2 g of copper oxide
$25 \mathrm{~cm}^{3}$ of dilute sulfuric acid

Equipment

Measuring cylinder

Metre rule

Thermometer

| $\mathbf{0}$ | $\mathbf{5} .7$ | g of copper sulfate is dissolved in water to make $25 \mathrm{~cm}^{3}$ of copper sulfate solution. |
| :--- | :--- | :--- | :--- |

Calculate the concentration of the copper sulfate solution in $\mathrm{g} / \mathrm{dm}^{3}$
\qquad
\qquad
\qquad
Concentration $=$ \qquad $\mathrm{g} / \mathrm{dm}^{3}$

0	6

Figure 9

A three-core cable connects the toaster to the mains electricity supply.

| 0 | 6 | 1 |
| :--- | :--- | :--- | Which material could be used for the wires in the three-core cable?

Tick (\checkmark) one box.

Copper

Diamond \square
Iodine \square
Poly(ethene) \square

| 0 | 6 | 2 |
| :--- | :--- | :--- | What is the potential of the earth wire?

Tick (\checkmark) one box.

0 V

1.5 V

12 V

230 V

The wires and the cable are covered with a plastic material.

0	6	3

Draw one line from each wire to the colour of the plastic material.

Wire

Brown

Green and yellow

| 0 | 6 | 4 |
| :--- | :--- | :--- | The plastic material covering the wires and cable is a type of polymer.

Explain how the plastic material acts as a safety feature if a person touches the cable.
[2 marks]
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{5}$ When the toaster is switched on the current is 4.0 A

The resistance of the toaster is 60Ω

Calculate the power of the toaster.
Use the equation:

$$
\text { power }=(\text { current })^{2} \times \text { resistance }
$$

Give the unit.
Choose the unit from the box.

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| coulomb | joule | volt | watt |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Power = \qquad Unit

$\mathbf{0}$	$\mathbf{7}$	Catalase is an enzyme.

0	$\mathbf{7}$	$\mathbf{1}$ What type of molecule is an enzyme?

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ Hydrogen peroxide decomposes in the presence of catalase.

This is the equation for the reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \quad \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad+\mathrm{O}_{2}(\mathrm{~g})
$$

Describe how the student could test for the gas produced.

Test
Result \qquad
\qquad

This

Resut

Question 7 continues on the next page

A student investigated the effect of pH on the activity of catalase.

\qquad
\qquad
\qquad
\qquad

Table 6 shows the results.
Table 6

$\mathbf{p H}$	Enzyme activity in arbitrary units
3.0	0
4.0	6
5.0	22
6.0	37
7.0	44
8.0	34
9.0	16
10.0	2

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{4}$ What is the optimum pH for catalase in this reaction?

Use Table 6

Optimum pH = \qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{5}$ How could the student find a more accurate value for the optimum pH ?

Tick (\checkmark) one box.

Decrease the hydrogen peroxide concentration

Increase the pH range

Increase the temperature to $60^{\circ} \mathrm{C}$

Use smaller pH intervals

$\mathbf{0}$	$\mathbf{7}$	6	Explain the result for catalase at pH 3.0

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	8	A student investigated magnets.

The student used a paper clip, metre rule and magnets.
Figure 10 shows the apparatus with one magnet.
Figure 10

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ Write down the resolution of the metre rule.

Resolution = \qquad

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$ Explain why the paper clip is attracted to the magnet. .4.

\qquad
\qquad
\qquad
\qquad

The student placed the paper clip at different distances from the magnet.
She recorded the minimum distance at which the paper clip did not move towards the magnet.

She repeated the investigation using different numbers of magnets.

$\mathbf{0}$	$\mathbf{8}$.	3

\qquad
\qquad

Table 7 shows the results of the investigation.
Table 7

Number of magnets	Minimum distance at which paper clip did not move in $\mathbf{c m}$
1	1.8
2	3.6
3	5.4
4	6.6
5	\mathbf{X}
6	7.1
7	7.2
8	7.2

0	8	4	Predict the value \mathbf{X} in Table 7.

$X=$ \qquad cm

Question 8 continues on the next page

There is a resultant force on the paper clip. The resultant force causes the paper clip to accelerate towards the magnet.

$\mathbf{0}$	$\mathbf{8} .5$	$\mathbf{5}$ Write the equation which links acceleration, mass and resultant force.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8} .6$ The mass of the paper clip is 0.0012 kg |
| :--- | :--- | :--- | :--- |

Calculate the acceleration of the paper clip when the resultant force on it is 0.000168 N

Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad Unit \qquad

The Earth has a magnetic field.

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{7}$	The magnetic field is probably caused by movements inside the Earth.

Name the part of the Earth in which the movements take place.
\qquad

| $\mathbf{0}$ | $\mathbf{8} .8$ Give one piece of evidence to show that the Earth's magnetic field has changed |
| :--- | :--- | :--- | over time.

\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{9} \quad$ This question is about graphene and graphite. |
| :--- | :--- | :--- |

Graphene is a single layer of graphite.
Figure 11 represents part of the structure of graphene.

Figure 11

| $\mathbf{0}$ | $\mathbf{9} .1$ | Graphene is one atom thick. The diameter of the atom is $3.4 \times 10^{-10} \mathrm{~m}$ |
| :--- | :--- | :--- | What is the thickness of a graphene layer in nanometres?

$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
Tick (\checkmark) one box.
0.034 nm

0.34 nm

3.4 nm

34 nm

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{2}$ Which is one use of graphene?

Tick (\checkmark) one box.

As a detergent

As a solvent

In composites

To produce polymers

0	9	3	$G r a p h e n e ~ a n d ~ g r a p h i t e ~ a r e ~ u s e d ~ i n ~ e l e c t r o n i c s . ~$

Suggest one reason why graphene is a more suitable material for use in electronics than graphite.
\qquad
\qquad

0	9	4
Figure		
12	represents part of the structure of graphite.	

Figure 12

Graphite is used as a contact in electric motors because graphite:

- conducts electricity
- is slippery.

Explain why graphite has these properties.
You should refer to the structure and bonding of graphite in your answer.
\qquad
There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

