AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE
 COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 3 Physical Sciences

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| 0 | 1 |
| :--- | :--- |\quad Figure 1 shows a boat pulling a person parasailing.

A rope attaches the person to the boat.

Figure 1

0	1	$\mathbf{1}$

Tick (\checkmark) one box.

Contact force

Magnetic force \square

Non-contact force \square

Calculate the weight of the person.
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

\qquad
\qquad
\qquad
Weight $=$ \qquad N

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{3}$ The resultant force acting on the person is zero.

Which of the following describes the motion of the person?
Tick (\checkmark) one box.

Velocity decreasing

Moving at constant velocity \square

Velocity increasing \square

Question 1 continues on the next page

Turn over

$\mathbf{0}$	$\mathbf{1}$.4 The horizontal force on the person is 4300 N . $. ~ . ~$

Calculate the work done by this force in moving the person a horizontal distance of 500 m .

Use the equation:

$$
\text { work done }=\text { force } \times \text { distance }
$$

Choose the unit from the box.

		[3 marks]
joules	metres/second	watts

\qquad
\qquad
\qquad
\qquad
\qquad
Work done $=$ \qquad
Unit \qquad

$\mathbf{0}$	$\mathbf{1}$.
$\mathbf{5}$ The speed of the boat changes.	

The height of the person above the water decreases by 18 m .

Calculate the decrease in gravitational potential energy of the person.
mass of person $=75 \mathrm{~kg}$
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Use the equation:
gravitational potential energy $=$ mass \times gravitational field strength \times height
[2 marks]
\qquad
\qquad
\qquad
Decrease in gravitational potential energy = \qquad J

$\mathbf{0}$	$\mathbf{2}$ This question is about reactions of metals.

A piece of magnesium reacts with dilute hydrochloric acid.
Magnesium chloride solution and a gas are produced.

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{1}$ Which gas is produced? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

Chlorine

Hydrogen

Oxygen

1 \qquad
\qquad
2 \qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$.3	$\mathbf{3}$

What is the formula of magnesium chloride?
[1 mark]
Tick (\checkmark) one box.
MgCl \square
MgCl_{2} \square
$\mathrm{Mg}_{2} \mathrm{Cl} \square$
$\mathrm{Mg}_{2} \mathrm{Cl}_{2}$ \square

0	2	4
4	Calcium is in the same group as magnesium in the periodic table.	

What is the symbol for a calcium ion?
[1 mark]
Tick (\checkmark) one box.
$\mathrm{Ca}^{+} \square$

Ca^{2-} \square

Question 2 continues on the next page

0	2	5

Figure 2

How would you calculate the total surface area of this cube?

Tick (\checkmark) one box

Total surface area $=2 \times 2 \times 2$

Total surface area $=2 \times 2 \times 4$

Total surface area $=2 \times 2 \times 6$ \square

Total surface area $=2 \times 4 \times 6$ \square

0	2	6
6	Complete the sentence.	

Choose the answer from the box.

When a cube of calcium is cut into smaller pieces the total surface area \qquad .
A teacher investigated the reaction between calcium and water.
The teacher used the same mass of three different forms of calcium.
The different forms of calcium were:

- powder
- small lumps
- large lumps.
The teacher measured the time for each reaction to be complete.

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{7}$ What is the independent variable in the investigation? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.
Form of calcium

Mass of calcium

Time for reaction to be complete

| 0 | 2 | • 8 Which form of calcium will react the fastest? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.
Powder \square
Small lumps \square
Large lumps \square

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{9}$ Which is the best way to display the results for the three different forms of calcium? |
| :--- | :--- | :--- | [1 mark] Tick (\checkmark) one box.

Bar chart

Line graph

Pie chart \square

0	$\mathbf{3}$	An oven is connected to the mains electricity supply using a three-core cable.

Figure 3 shows the three-core cable.

Figure 3

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$ The insulation covering the earth wire has green and yellow stripes.

Give the colours of the insulation covering the live wire and the neutral wire.
[2 marks]
Live wire \qquad

Neutral wire \qquad

Question 3 continues on the next page

A thermistor is used as part of a temperature sensor in the oven.

0	3	$\mathbf{2}$ What is the circuit symbol for a thermistor?

Tick (\checkmark) one box.

Figure 4 shows how the resistance of the thermistor in the oven varies with temperature.

Figure 4

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ Which statement describes the relationship shown in Figure 4? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

As temperature increases, resistance decreases.

As temperature increases, resistance stays the same.

As temperature increases, resistance increases.

| 0 | 3 | .4 |
| :--- | :--- | :--- | Which temperature range shows the greatest decrease in the resistance of the thermistor?

Tick (\checkmark) one box.

Between 50 and $100^{\circ} \mathrm{C}$

Between 100 and $150^{\circ} \mathrm{C}$

Between 150 and $200^{\circ} \mathrm{C}$

Between 200 and $250^{\circ} \mathrm{C}$

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3} . \mathbf{5}$ The resistance of the heating element in the oven is 5.0Ω. $. . .0 \mid$ |
| :--- | :--- | :--- |

The current in the heating element is 12 A .

Calculate the power output of the heating element.
Use the equation:

$$
\text { power }=(\text { current })^{2} \times \text { resistance }
$$

\qquad
\qquad
\qquad
Power = \qquad W

| 0 | $\mathbf{3}$ | 6 | Calculate the energy transferred by the oven when 8000 C of charge flows through |
| :--- | :--- | :--- | :--- | the heating element.

The potential difference across the heating element is 230 V .
Use the equation:

$$
\text { energy transferred }=\text { charge flow } \times \text { potential difference }
$$

\qquad
\qquad
\qquad
Energy transferred = \qquad J

0	3	$\mathbf{7}$	An LED on the oven is connected to an alternating current supply.

When the supply is switched on, the LED flashes on and off continuously.
Explain why.
[2 marks]
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 4 |
| :--- | :--- | This question is about hydrocarbons.

Methane is a hydrocarbon.
The formula of methane is CH_{4}

| 0 | 4 | -1 |
| :--- | :--- | :--- | Name the two elements in methane.

1 \qquad

2 \qquad

0	$\mathbf{4}$.2
$\mathbf{2}$	Complete Figure 5 to show the structure of a methane $\left(\mathrm{CH}_{4}\right)$ molecule.	

[1 mark]
Figure 5

$$
\mathrm{H}-\mathrm{C}
$$

$\mathbf{0}$	$\mathbf{4}$	$\cdot \mathbf{3}$ What is the type of bonding in methane?

Tick (\checkmark) one box.

Covalent

Ionic

Metallic

| 0 | 4 |
| :--- | :--- |, 4 Calculate the percentage by mass of element C in a CH_{4} molecule.

Relative atomic mass (A_{r}): $\quad C=12$
Relative formula mass $\left(M_{\mathrm{r}}\right): \quad \mathrm{CH}_{4}=16$
\qquad
\qquad
\qquad
Percentage of $\mathrm{C}=$ \qquad \%

Cracking breaks down hydrocarbons into smaller molecules.

0	4	5	5

[1 mark]
\qquad
$\mathrm{C}_{13} \mathrm{H}_{28}$ is a hydrocarbon.
$\begin{array}{llll}\mathbf{0} & \mathbf{4} & 6 & \mathrm{C}_{13} \mathrm{H}_{28} \text { is cracked to produce } \mathrm{C}_{8} \mathrm{H}_{18} \text { and another product. }\end{array}$ Complete the equation for the reaction.
$\mathrm{C}_{13} \mathrm{H}_{28} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{-} \mathrm{H}_{-}$

Question 4 continues on the next page

Turn over

0	4	-7	$\mathrm{C}_{8} \mathrm{H}_{18}$ and $\mathrm{C}_{13} \mathrm{H}_{28}$ are both alkanes.

$\mathrm{C}_{8} \mathrm{H}_{18}$ is a smaller molecule than $\mathrm{C}_{13} \mathrm{H}_{28}$

Give one use of alkanes that have small molecules.
[1 mark]
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$.8	Cracking also produces alkenes.

Ethene is an alkene.

What is the formula of ethene?
[1 mark]
Tick (\checkmark) one box.
$\mathrm{C}_{2} \mathrm{H}_{4} \square$
$\mathrm{C}_{2} \mathrm{H}_{6} \square$
$\mathrm{C}_{3} \mathrm{H}_{6} \square$
$\mathrm{C}_{3} \mathrm{H}_{8}$
\square

0	4	9

Ethene molecules join together to form a long-chain molecule
called \qquad .

都

| 0 | 5 |
| :--- | :--- | A life cycle assessment (LCA) is done to assess the environmental impact of a product.

| 0 | 5 |
| :--- | :--- |$\quad 1 \quad$ An LCA has four stages.

Draw one line from each LCA stage to the description of what happens to the product at that stage.

LCA stage

Stage 1

Stage 2

Stage 3

Stage 4
Use and operation during lifetime
Extracting and processing raw materials

Manufacturing and packaging

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{2}$ Some information in an LCA is estimated.

This means that false claims may be made.

What is done to check the estimated information in an LCA?
Tick (\checkmark) one box.

Drawing graphs

Making hypotheses

Peer review \square

A student has a cotton shirt.
Table 1 shows the percentage of the total water used at each stage in the LCA for the cotton shirt.

Table 1

Stage	Percentage of total water used (\%)
Disposal at end of useful life	1
Extracting and processing raw materials	22
Manufacturing and packaging	\mathbf{X}
Use and operation during lifetime	71

0	5	.	3	Calculate value \mathbf{X} in Table 1.

\qquad
\qquad
$X=$ \qquad \%
 Suggest the main use of water during this stage.
\qquad
\qquad

| 0 | 5 | 5 |
| :--- | :--- | :--- | stage of the LCA for the cotton shirt.

Do not refer to water in your answer.

1 \qquad
\qquad
2 \qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$.6 The student grows taller and the cotton shirt no longer fits the student.

Suggest how the student can reduce the impact of the cotton shirt on the environment.

Give one reason why this reduces the impact on the environment.

Suggestion \qquad
\qquad
Reason \qquad

| 0 | 6 |
| :--- | :--- | A scalar quantity has size, but no direction.

0	6	1

Which of the following is a scalar quantity?

Tick (\checkmark) one box.

Acceleration

Speed

Velocity

Weight

Figure 6 shows the route a car travelled from town \mathbf{P} to town \mathbf{Q}.

Figure 6

The displacement of the car is the straight-line distance from town \mathbf{P} to town \mathbf{Q}.
 town \mathbf{Q}.

Include the direction from north.
\qquad
\qquad
\qquad
\qquad
Displacement $=$ \qquad km

Direction from north = \qquad -

Question 6 continues on the next page

 The car has a mass of 800 kg .

Calculate the resultant force on the car.
Use the equation:
resultant force $=$ mass \times acceleration
[2 marks]
\qquad
\qquad
\qquad
Resultant force $=$ \qquad N

0	6.	4
4	Figure 7 shows a distance-time graph for a different part of the car's journey.	

Figure 7

Determine the speed of the car.
\qquad
\qquad
\qquad
Speed = \qquad m/s
.

0	7	This question is about substances found in the Earth's crust.

| $\mathbf{0}$ | $\mathbf{7}$ | .1 | Aluminium silicate is a compound found in the Earth's crust. |
| :--- | :--- | :--- | :--- | The formula of aluminium silicate is $\mathrm{Al}_{2} \mathrm{SiO}_{5}$

What is the total number of atoms in the formula $\mathrm{Al}_{2} \mathrm{SiO}_{5}$? Tick (\checkmark) one box.
3
\square
5 \square
7 \square
8

Table 2

Element	Percentage in the Earth's crust (\%)
Aluminium	8
Iron	5
Oxygen	47
Silicon	28

Calculate the simplest whole number ratio for the percentage of silicon to the percentage of aluminium in the Earth's crust.
\qquad
\qquad
\qquad
Simplest whole number ratio for:
percentage of silicon : percentage of aluminium $=$ \qquad :

Iron is found as iron oxide in the Earth's crust.
Iron can be extracted by heating iron oxide with carbon.

| $\mathbf{0}$ | $\mathbf{7} \cdot \mathbf{3}$ Why is iron oxide reacted with carbon to extract iron? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

Iron is less reactive than carbon. \square

Iron has the same reactivity as carbon. \square

Iron is more reactive than carbon. \square

| $\mathbf{0}$ | $\mathbf{7}$ | .4 |
| :--- | :--- | :--- | The word equation for the reaction to extract iron is:

iron oxide + carbon \longrightarrow iron + carbon dioxide

Which reactant is reduced?
Tick (\checkmark) one box.

Carbon

Carbon dioxide

Iron \square

Iron oxide \square

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{5}$ The symbol equation for the reaction to extract iron is:

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \longrightarrow 4 \mathrm{Fe}+\mathrm{XCO}_{2}
$$

What is the value of \mathbf{X} ?
Tick (\checkmark) one box.
2

3 \square
4 \square
5 \square

Question 7 continues on the next page

Aluminium is found as aluminium oxide in the Earth's crust.
Figure 8 shows the apparatus used for the process to extract aluminium from aluminium oxide.

Figure 8

0	$\mathbf{7}$.	6
Name the process used to extract aluminium from aluminium oxide.		

$\mathbf{0}$	$\mathbf{7} \cdot \mathbf{7}$ What are the positive electrodes made of in this process?

Tick (\checkmark) one box.

Aluminium

Carbon

Copper

Cryolite \square

| $\mathbf{0}$ | $\mathbf{7} \cdot \mathbf{8}$ Large amounts of energy are used in the process in Figure 8. |
| :--- | :--- | :--- | :--- |

Give two ways energy is used in the process.

1 \qquad
\qquad
2 \qquad
\qquad

Question 7 continues on the next page

0	$\mathbf{7}$	-9
Diamond and silicon dioxide are also found in the Earth's crust.		

Figure 9 represents the structure of diamond and the structure of silicon dioxide.

Figure 9

Diamond

Silicon dioxide

| 0 | 8 |
| :--- | :--- | This question is about structure and bonding.

0	8	1
1	Figure 10 represents the electronic structure of an atom of an element.	

Figure 10

Name the element in Figure 10.
Give one reason for your answer.
Use the periodic table.

Element \qquad
Reason \qquad
\qquad

Sodium reacts with fluorine to produce sodium fluoride.
Sodium fluoride is an ionic compound.

| 0 | 8 |
| :--- | :--- | .2 An atom of sodium and an atom of fluorine react to form a sodium ion and a fluoride ion.

Complete the dot and cross diagram for the sodium ion and the fluoride ion.
Show the charges on the ions.
$\mathrm{Na} \cdot+\underset{\times \times \times \mathrm{xx}}{\times \underset{\mathrm{x}}{\times x}} \longrightarrow \mathrm{Na}][\mathrm{F}]$

0	8	.	3
	Figure 11 represents the structure of sodium fluoride.		

Figure 11

Describe how sodium ions and fluoride ions are held together in sodium fluoride.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	8	4
4	What is a property of sodium fluoride?	

Tick (\checkmark) one box.

Conducts electricity when solid \square

High melting point

Low boiling point

| 0 | 9 |
| :--- | :--- | A student investigated how the resistance of a piece of wire varied with the length of the wire.

Figure 12 shows an ammeter the student could have used in the investigation.

Figure 12

| 0 | $\mathbf{9}$ | $\mathbf{1}$ What is the resolution of the ammeter? |
| :--- | :--- | :--- | :--- |

Resolution = A

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{2}$ Which quantity must stay the same so the wire behaves as an ohmic conductor? |
| :--- | :--- | :--- | Tick (\checkmark) one box.

Air pressure \square

Density of the wire \square

Temperature of the wire \square

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{3}$ Write down the equation which links current (I), potential difference (V) and |
| :--- | :--- | :--- | resistance (R).

[1 mark]
 The current in the wire was 0.70 A .

Calculate the resistance of this length of wire.
\qquad
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

Question 9 continues on the next page

0	9	5	Figure 13 shows the circuit used in the investigation.

Figure 13

The student plotted a graph of resistance against length of the wire.
Describe a method the student could use to obtain the data needed to plot the graph.
\qquad

Turn over for the next question

| 1 | 0 |
| :--- | :--- |\quad This question is about groups in the periodic table.

Neon and argon are Group 0 elements.

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$ What name is given to Group 0?

\qquad
10.2 Give one similarity of the electronic structure of neon and the electronic structure of argon.
\qquad
\qquad

1	$\mathbf{0}$.3
$\mathbf{3}$	Give one difference between the electronic structure of neon and the electronic	

[1 mark]
\qquad
\qquad
\qquad

Question 10 continues on the next page

Turn over

1	0	4
4	Table 3 shows information about elements in Group 1.	

Table 3

Element	Relative atomic mass	Melting point in ${ }^{\circ} \mathrm{C}$
Lithium	7	181
Sodium	23	98
Potassium	39	64
Rubidium	85	39
Caesium	133	29

Complete Figure 14.

You should:

- label both axes
- plot the data from Table 3.

Figure 14

1	0	5

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	...

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved

