GCSE
 COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 2F

Specimen 2018

Materials

For this paper you must have:

- a ruler
- a calculator
- the periodic table (enclosed)
- the Physics equation sheet (enclosed).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions 05.4 and 10.1 you need to make sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

- In all calculations, show clearly how you work out your answer.

Please write clearly, in block capitals.
Centre number

Forename(s)

| $\mathbf{0}$ | $\mathbf{1}$ Our nervous system controls our reactions. |
| :--- | :--- | :--- |

Figure 1 shows the part of the nervous system involved in the rapid response to a stimulus.

Figure 1

| $\mathbf{0}$ | $\mathbf{1}$ | .1 |
| :--- | :--- | :--- | What is this type of rapid response called?

Tick one box.

Circular action \square
Fast action \square
Forced action \square
Reflex action \square

$\mathbf{0}$	$\mathbf{1} .2$	Features of the nervous system are labelled A, B, C, D and E on Figure 1.

Draw one line from each feature to the correct label from Figure 1.

Question 1 continues on the next page

Two students compare their reactions using a ruler.
This is the method used.

1. Student \mathbf{A} sits with his elbow on a table top.
2. Student \mathbf{B} holds the ruler so the bottom of the ruler is level with the top of student A's thumb.
3. Student \mathbf{B} drops the ruler.
4. Student \mathbf{A} catches the ruler.
5. Record the drop distance.
6. Repeat steps 1 to 5 four more times.
7. Repeat the whole experiment with student \mathbf{A} dropping the ruler and student \mathbf{B} catching it.

Both students are right-handed.
The students are testing the hypothesis:
the drop distance of the ruler is smaller when a right-handed person uses their right hand to catch the ruler.

Student \mathbf{A} uses his right hand to catch the ruler.
Student \mathbf{B} uses her left hand to catch the ruler.

0	1	3	Complete the sentence.

Use an answer from the box.

The drop distance was the variable.

Question 1 continues on the next page

Table 1 shows the students' results.

Table 1

Student	Drop distance in cm					
	Test 1	Test 2	Test 3	Test 4	Test 5	
Student A	17.5	15.5	15.0	23.5	17.0	
Student B	20.5		19.5	21.0	19.0	

$\mathbf{0}$	$\mathbf{1}$.4	Figure 2 shows student B's Test 2 result.

Figure 2

Use Figure 2 to complete the missing result for Test 2.
Write the answer in Table 1.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{5}$ What was the resolution of the ruler the students used?

Tick one box.
0.1 cm \square
0.5 cm
1 cm \square
10 cm \square

$\mathbf{0}$	$\mathbf{1}$	6	One of the results in Table $\mathbf{1}$ is anomalous.

Identify the anomalous result.
Give the reason why you chose your answer.

| 0 | 1 | $\mathbf{7}$ |
| :--- | :--- | :--- | The students are testing the hypothesis:

the drop distance of the ruler is smaller when a right-handed person uses their right hand to catch the ruler.

The results in Table 1 are not a good test of the hypothesis.
What is one reason why?
Tick one box.

The drop distances are very variable
The drop distance for Student \mathbf{A} is sometimes bigger thanthe drop distance for Student B

The results are for the left and right hands of different people

The drop distances are not measured accurately enough \square

| 0 | 2 |
| :--- | :--- | Alpha, beta and gamma are types of nuclear radiation.

A teacher sets up a demonstration of the penetration properties of alpha, beta and gamma radiation.

Figure 3 shows the demonstration.

Figure 3

1
\qquad
2 \qquad
\qquad

Table 2 shows how the count rate of a radioactive source changes with time.

Table 2

Time in seconds	0	40	80	120	160
Count rate in counts/second	600	463	300	221	150

$\mathbf{0}$	$\mathbf{2} .3$ Describe the relationship shown in Table 2.

| $\mathbf{0}$ | 2 | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | Use Table 2 to predict the count rate after 200 seconds.

| $\mathbf{0}$ | $\mathbf{2} .5$ | The half-life of the radioactive source is very short. |
| :--- | :--- | :--- | :--- |

Give one reason why the source would be much less hazardous after 800 seconds.

| $\mathbf{0}$ | $\mathbf{3} \quad$ Blood sugar levels in the body are controlled by insulin. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ How does insulin travel around the body?

Question 3 continues on the next page

0	3	2

Table 3

Time after eating in hours	Blood sugar levels in mg per $\mathbf{1 0 0} \mathbf{c m}^{\mathbf{3}}$ of blood	
	Person A	Person B
0	70	130
1	150	230
2	90	185
3	80	165
4	75	140

Use data from Table 3 to complete the graph in Figure 4.
Plot the points for person \mathbf{A}.
The first two points have been plotted for you.
Draw a line through all the points.

Figure 4

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ How long after the meal is person \mathbf{B} 's insulin production at its peak? |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
Decrease $=$
mg per $100 \mathrm{~cm}^{3}$

| $\mathbf{0}$ | $\mathbf{3} .5$ | 5 |
| :--- | :--- | :--- | to return to the level before the meal.

Show your working on Figure 4.
\qquad
\qquad

Turn over for the next question

0	$\mathbf{4}$	A student investigated the number of ribwort plants in a field.

The student used the apparatus shown in Figure 5.

Figure 5

This is the method used.

1. Place the quadrat in an area where there are lots of ribwort plants in the field.
2. Count the number of ribwort plants inside a quadrat.
3. Repeat steps 1 and 2 four more times.

0	$\mathbf{4}$	$\mathbf{1}$ How could the student improve his method so that he can collect valid results?

[2 marks]
Tick two boxes.

Count the leaves of each ribwort plant

Place more quadrats in the field \square
Place the quadrats randomly
Use a smaller quadrat \square
Weigh the ribwort plants \square

| $\mathbf{0}$ | $\mathbf{4} .2$ | $\mathbf{2}$ The student calculated that the mean number of ribwort plants per m^{2} was 3.2 |
| :--- | :--- | :--- | The area of the field was $8250 \mathrm{~m}^{2}$.

Calculate the total number of ribwort plants in the field.

Total number of ribwort plants $=$

Another group of students did an investigation in the field.
Figure 6 shows how the students placed their quadrats in this investigation.

Figure 6

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{3}$ What is the name given to the line in Figure 6?

Figure 7 shows the students' results.
Figure 7

| 0 | $\mathbf{4}$ | $\mathbf{4}$ Describe the relationship shown in Figure 7. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 5 |
| :--- | :--- | :--- | :--- | What is one reason why there are no ribwort plants next to the path? Tick one box.

There is less light near the path \square
The ribwort plants get walked on \square
There are more nutrients in the soil near the path \square
There are fewer animals near the path \square

Turn over for the next question

There are no questions printed on this page

| $\mathbf{0}$ | $\mathbf{5}$ Millions of years ago the Earth's atmosphere was probably like the atmosphere of |
| :--- | :--- | Mars today.

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{1}$ Table 4 shows percentages of the main gases in the atmospheres of Earth and |
| :--- | :--- | :--- | :--- | Mars today.

Table 4

Gas	Percentage in atmosphere of Mars today	Percentage in atmosphere of Earth today
Carbon dioxide	95.00	0.04
Nitrogen	3.50	78.00
Oxygen	0.50	21.00

For each gas in the table, suggest a reason for the change in the percentage of the gas in Earth's atmosphere.
[3 marks]
Carbon dioxide

Nitrogen

Oxygen

Question 5 continues on the next page

Figure 8 shows how the concentration of carbon dioxide in the Earth's atmosphere changed between 1900 and 2000.

Figure 8

| $\mathbf{0}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | $\mathbf{2}$ One of the causes of the increase in carbon dioxide between 1900 and 2000 is increased use of fossil fuels.

Suggest when use of fossil fuels began to increase.

Use data from Figure 8 to explain your answer.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | $\mathbf{3}$ What is the percentage increase in carbon dioxide levels between 1970 and 2000? [3 marks]

\qquad
\qquad
\qquad
Increase = $\%$

| 0 | 5 | 4 | Explain how the changes shown in Figure 8 can have harmful effects on |
| :--- | :--- | :--- | :--- | the environment.

\qquad
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

0	6	A person's characteristics can be due to:

- environmental causes
- genetic causes
- both environmental and genetic causes.

0	6	1

Put a tick to show what each characteristic is due to.

Table 5

Characteristic	Characteristic due to		
	Environmental causes	Genetic causes	Both environmental and genetic causes
A scar			
Weight			

0	6	2

Key term

Definition

The set of alleles for a characteristic
Genotype

The genus of an organism

The inheritance of chromosomes

Phenotype

The mutation of genes

The physical characteristics of an organism

0	6	3	Farmers use selective breeding to control the characteristics in cows.

Table 6 shows the stages of selective breeding in cows.

Complete Table 6 to show the correct order of the stages.
The first stage has been numbered for you.

Table 6

Stage in selective breeding	Order of stage
Cows are bred over many generations	
Parents are bred together	
Cows with the desired characteristics are chosen	1
Calves with the most desired characteristics are bred together	

$\mathbf{0}$	$\mathbf{6} .4$	Farmers selectively breed cows for many different reasons.

Suggest two characteristics that cows may be bred for.
Do not suggest coat colour.

1
\qquad

2
\qquad

0	6	5	Selective breeding can lead to problems.

Suggest how problems caused by selective breeding in cows can have negative financial effects for the farmer.
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

0	$\mathbf{7}$

Figure 9 shows some features of a Salmonella bacterium.

Figure 9

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Draw one line from each feature of the Salmonella bacterium to the function.

[2 marks]

Feature

Function
Controls the movement of substances into and out of the cell

Cell membrane

> Carries genetic information

Plasmid DNA

Provides support and protection

The site of protein synthesis

$\mathbf{0}$	$\mathbf{7} .2$	$\mathbf{2}$ How is Salmonella spread between people?

Tick one box.

Animal bites \square
Contaminated food \square
Sneezing \square
Sexual contact \square

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Give two ways you could stop Salmonella from spreading. |
| :--- | :--- | :--- | :--- |

1 \qquad
\qquad
2 \qquad
\qquad

Question 7 continues on the next page

Harmful bacteria can also be useful.
Scientists are doing research to find out if Salmonella can be used in a vaccine to treat cancer.

| 0 | $\mathbf{7}$ | 4 |
| :--- | :--- | :--- | The Salmonella vaccine can be injected into the blood or swallowed in a tablet.

One benefit of injecting the vaccine is that it gets to the cancer quickly in the blood.

What is another benefit?
Tick one box.

All cancers can be treated by the injection

It will not cause sickness and diarrhoea side effects \square
The injection is not painful to the patient \square
The injection introduces cancer cells into the body \square

| 0 | 7 |
| :--- | :--- | :--- | .5 The Salmonella bacterium used in the vaccine is genetically modified using part of a virus.

Look at Figure 10.

Figure 10

Complete the sentences.
Use the letters from Figure 10.
[3 marks]
Bacteria reproduce quickly in part \qquad .

DNA with the desired gene is removed from the virus in part \qquad .

The chosen gene is inserted into the plasmid in part \qquad .

0	8	Oxides of nitrogen are produced when fuels are burnt.

| 0 | 8 | $\mathbf{1}$ | Write a balanced symbol equation for the production of nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ from |
| :--- | :--- | :--- | :--- | nitrogen and oxygen.

| 0 | 8 |
| :--- | :--- | 2 Figure 11 gives information about emissions of oxides of nitrogen in the UK.

Figure 11

Calculate the percentage decrease in emissions of oxides of nitrogen from 1990 to 2014.

Give your answer to three significant figures.
[3 marks]
\qquad
\qquad
\qquad
\qquad
Percentage decrease $=$ \qquad \%

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{3}$ Give one advantage of reducing the emissions of oxides of nitrogen.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{9}$ A student used paper chromatography to identify the pigments in spinach leaves. |
| :--- | :--- | She used propanone as a solvent.

Figure 12 shows the student's results.
Figure 12

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{1}$ Name the mobile phase and the stationary phase in the student's experiment.

[2 marks]
Mobile phase
Stationary phase

| 0 | 9 |
| :--- | :--- | $\mathbf{2}$ What does Figure 12 tell you about the green pigment from spinach?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{3}$ Write the equation that links distance moved by solvent, distance moved |
| :--- | :--- | :--- | by solute and R_{f} value.

\qquad
\qquad
\qquad
\qquad
\qquad
R_{f} value $=$ \qquad

Question 9 continues on the next page

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{5}$ Another student set up the apparatus shown in Figure 13. |
| :--- | :--- | :--- | :--- |

Figure 13

This student did not set up the apparatus correctly.

Identify the errors the student made.

Explain how the errors she made would affect her results.
\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow
\qquad
\qquad

Turn over for the next question

| $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | A student investigated the specific heat capacity of metals.

| $\mathbf{1}$ | $\mathbf{0}$. | $\mathbf{1}$ Describe an experiment the student could do to measure the specific heat |
| :--- | :--- | :--- | capacity of a metal.

\qquad \longrightarrow (
\qquad $\xrightarrow{ }$ \longrightarrow (
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad (

The student calculated the specific heat capacity of four metals.
Table 7 shows the student's results.

Table 7

Metal	Mass of material in kg	Time in minutes	Temperature change in ${ }^{\circ}$ C	Change in thermal energy in J	Calculated specific heat capacity of material in J/kg ${ }^{\circ}$ C
Aluminium	1	10	2	4780	2390
Brass	1	10	4	4660	1165
Copper	1	10		4600	657
Steel	1	10	5	4690	938

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$ Use data from Table 7 to calculate the temperature change for copper.

Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
\qquad
Temperature change $=$

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{3}$ What is the independent variable in the student's investigation? |
| :--- | :--- | :--- | :--- |

Tick one box.

Mass of material \square
Power used

Time in minutes

Type of material \square
 The 'true' specific heat capacity of aluminium is $900 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.

Suggest why the student's result for aluminium is different from the 'true' value.
[2 marks]
\qquad
\qquad
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0} .5$ | The teacher suggested that putting bubble wrap round the metal block would |
| :--- | :--- | :--- | change the results.

How would using bubble wrap change the results?
Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

Copyright information

[^0]
[^0]: Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

 Copyright © 2016 AQA and its licensors. All rights reserved.

