AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: SYNERGY

Wednesday 20 May 2020 Afternoon Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| $\mathbf{0}$ | 1 |
| :--- | :--- |\quad This question is about gases in the atmosphere.

Table 1 shows the percentage of gases in Earth's early atmosphere and in Earth's atmosphere today.

Table 1

Gas	Estimated percentage (\%) in Earth's early atmosphere	Percentage (\%) in Earth's atmosphere today
Carbon dioxide	95.0	0.04
Nitrogen	3.5	78.08
Oxygen	0.5	20.95
Other gases	\mathbf{X}	0.93

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$ Which gas has the largest percentage in Earth's atmosphere today?

Tick (\checkmark) one box.

Carbon dioxide

Nitrogen

Oxygen \square

| 0 | $\mathbf{1} .2$ |
| :--- | :--- | $\mathbf{2}^{2}$ What is value X in Table 1?

Tick (\checkmark) one box.
0.5\% \square
1.0\% \square
1.5\% \square
4.5\%
\square

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{3}$	Describe three differences between Earth's early atmosphere and Earth's atmosphere today.

Use Table 1.

1 \qquad
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

0	1	4
4		

Tick (\checkmark) one box.

Fossil fuels

Sedimentary rocks

Volcanoes

Question 1 continues on the next page

One of the other gases in Earth's atmosphere today is water vapour.

0	1	5

Figure 1 shows the different states of water.

Figure 1

Name processes A and B.

A

B \qquad
\qquad

Figure 2 shows the rainfall from March to September in the UK.
Figure 2

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{7}$ |
| :--- | :--- | :--- | What was the rainfall in the month of April?

Rainfall $=$ \qquad mm

| $\mathbf{0}$ | $\mathbf{1} .8$ |
| :--- | :--- | :--- |
| 8 | Describe the pattern in rainfall between March and September. |

Include data from Figure $\mathbf{2}$ in your answer.
\qquad
\qquad
\qquad

$\mathbf{0}$	2	Figure 3 shows a food chain.

Figure 3
Algae \longrightarrow Crab \longrightarrow Loggerhead turtle \longrightarrow Shark

0	2	1
$\mathbf{1}$	Draw one line from each description to the organism in the food chain.	

$\mathbf{0}$	$\mathbf{2} .2$
$\mathbf{2}$	Which word describes the total number of crabs in this habitat?

Tick (\checkmark) one box.

Population \square
Predator \square
Species \square

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Explain what will happen to the number of loggerhead turtles if there are fewer crabs. |
| :--- | :--- | :--- | :--- |

Use information from Figure 3.
\qquad
\qquad
\qquad
\qquad
$\begin{array}{llll}\mathbf{0} & \mathbf{2} . & \mathbf{4} \text { What type of factor is a new predator? }\end{array}$
Tick (\checkmark) one box.

Abiotic \square
Biotic

Control

Question 2 continues on the next page

Female loggerhead turtles lay their eggs on sandy beaches.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{5}$

Figure 4 shows:

- the number of eggs each turtle laid
- the length of the turtle that laid the eggs.

Figure 4

Describe the trend in the data on Figure 4.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{6}$	Female loggerhead turtles return to the same beach each year to lay their eggs.

Global warming is causing the sea level to rise.

Explain the effect that sea levels rising might have on the number of loggerhead turtles.
\qquad
\qquad
\qquad
\qquad

Greenhouse gases are one cause of global warming.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{7}$ Methane is a greenhouse gas.

The concentration of methane in the atmosphere was:

- 720 arbitrary units in 1840
- 1872 arbitrary units in 2018.

How many times greater was the concentration of methane in the atmosphere in 2018 than in 1840?
\qquad
\qquad
Number of times greater $=$ \qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$. | 8 |
| :--- | :--- | :--- | Which two human activities cause an increase in greenhouse gases in the atmosphere?

Tick (\checkmark) two boxes.

Burning wood on a fire

Planting trees in new areas \square
Switching off lights in the home

Travelling by aeroplane

Using wind turbines to generate electricity

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{3}$ Diabetes is a condition where the concentration of sugar in the blood can become |
| :--- | :--- | :--- | too high.

0	$\mathbf{3}$.	$\mathbf{1}$ Which chemical decreases the concentration of sugar in the blood?

Tick (\checkmark) one box.

Glucose

Glycogen

Insulin

| 0 | 3 | 2 |
| :--- | :--- | :--- | Which organ monitors and controls the concentration of sugar in the blood? Tick (\checkmark) one box.

Kidney \square
Pancreas

Stomach

A company produces two breakfast cereals.
In a 30 g serving:

- cereal A contains 11 g of sugar
- cereal B contains 25% less sugar than cereal \mathbf{A}.

0	3	3	Calculate 25% of 11 g

\qquad
\qquad
\qquad
25% of $11 \mathrm{~g}=$

$\mathbf{0}$	$\mathbf{3} .4$	$\mathbf{4}$ Calculate the mass of sugar in a 30 g serving of cereal \mathbf{B}.

Use your answer from Question 03.3.
\qquad
\qquad
Mass of sugar = \qquad g

0	3	$\mathbf{5}$ Decreasing sugar in the diet can help prevent Type 2 diabetes. .4.

Give one other health benefit of eating less sugar.
\qquad
\qquad

Question 3 continues on the next page

0	3	6

Table 2 shows how walking quickly or running may reduce the risk of developing different medical conditions.

The greater the percentage reduction in risk, the less chance there is of developing the medical condition.

Table 2

Medical condition	Percentage (\%) reduction in risk of developing the medical condition	
	Walking quickly	Running
	9.3	4.5
Diabetes	12.3	12.1
High cholesterol	7.0	4.3

Compare the effects of walking quickly with the effects of running on the medical conditions given in Table 2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question

| 0 | 4 |
| :--- | :--- | This question is about breathing and respiration.

0	$\mathbf{4} .1$	What is the equation for aerobic respiration?

Tick (\checkmark) one box.

Figure 5 shows part of the human breathing system.

Figure 5

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$	Name \mathbf{X} and \mathbf{Y} shown in Figure 5.

Choose answers from the box.

alveoli	arteries	bronchi	capillaries	neurones

X \qquad
Y \qquad

| 0 | $\mathbf{4}$. | 3 |
| :--- | :--- | :--- | Structure \mathbf{X} has adaptations for efficient gas exchange.

Give one adaptation of structure \mathbf{X}.
\qquad
\qquad

Question 4 continues on the next page

Figure 6 shows a person using a peak flow meter.

Figure 6

Peak flow is how quickly air can be breathed out of the lungs.

Table 3 shows the peak flow of four students.

Table 3

Student	Peak flow in arbitrary units
A	470
B	515
C	260
D	420

Asthma is a condition that causes the muscles in the walls of the airways to contract.

| 0 | 4 | 4 |
| :--- | :--- | :--- | What effect will the contracting muscles have on the size of the airways?

Tick (\checkmark) one box.

Lengthen the airways

Narrow the airways

Stretch the airways

Widen the airways

$\begin{array}{lll}0 & 4 & 5 \\ 5\end{array}$
Tick (\checkmark) one box.
A \square
B

C

D

0	4	6	Table 3 shows that each student has a different peak flow.

Suggest two factors that may affect peak flow.
Do not refer to asthma in your answer.

1
\qquad
2 \qquad
\qquad

Question 4 continues on the next page

0	$\mathbf{4}$	$\mathbf{7}$	A student measured her breathing rate before exercise and after exercise.

Table 4 shows the results.

Table 4

	Breathing rate in breaths per minute
Before exercise	15
After exercise	41

Explain the effect of exercise on breathing rate.
\qquad
\qquad
\qquad

0	5	This question is about contraception.

0	5	1

Method of contraception

Uses hormones to stop the egg maturing

Prevents sperm from

Prevents the embryo from implanting

Oral contraceptive pill

How the method works

```
reaching the egg
    reaching the egg
```

IUD (intrauterine device)

Slows down the production of sperm

0	$\mathbf{5}$	$\mathbf{2}$ Which method of contraception can protect against sexually transmitted diseases?

Tick (\checkmark) one box.

Condom

IUD

Oral contraceptive pill

Question 5 continues on the next page
$\begin{array}{lllll}0 & 5 & 3 & \text { The oral contraceptive pill has to be taken every day to be effective. }\end{array}$
Suggest one reason why a woman taking the oral contraceptive pill may become pregnant.
\qquad
\qquad

0	5	4
Surgical sterilisation is another method of contraception.		

Suggest one disadvantage of surgical sterilisation compared with taking the oral contraceptive pill.
\qquad
[1 mark
\qquad
\qquad

| 0 | 5 | 5 | Suggest two reasons why a man and a woman in a sexual relationship might choose |
| :--- | :--- | :--- | :--- | not to use contraception.

Do not refer to surgical sterilisation in your answer.

1 \qquad
\qquad
2 \qquad
\qquad
Turn over for the next question

| $\mathbf{0}$ | $\mathbf{6} \quad$ Four students investigated their reaction times. |
| :--- | :--- | :--- |

Figure 7 shows the equipment the students used.

Figure 7

This is the method used.

1. Place one foot on the pedal.
2. When the light turns on, press the pedal as quickly as possible.
3. Record the time shown on the datalogger.
4. Repeat steps $\mathbf{1}$ to $\mathbf{3}$ another three times.
5. Repeat steps $\mathbf{1}$ to $\mathbf{4}$ with each student.

Figure 8 shows information about the coordination of the action in this investigation.

Figure 8

Stimulus	Receptor	Coordinator	Effector	Response
A	in the eye	B	leg muscle	C

| 0 | 6 | 1 |
| :--- | :--- | :--- | What is stimulus \mathbf{A} in Figure 8?

Tick (\checkmark) one box.

Chemical \square

Light \square
Sound

0	6

Tick (\checkmark) one box.

Brain

Sensory neurone

Synapse

| $\mathbf{0}$ | $\mathbf{6} .3$ What is the response \mathbf{C} in Figure 8? |
| :--- | :--- | :--- |

\qquad
\qquad

Question 6 continues on the next page

Table 5 shows the results for each student.

Table 5

Student	Student age in years	Reaction time in seconds			
		Test 2	Test 3	Test 4	
A	11	0.74	0.72	0.71	0.71
B	14	0.80	0.79	0.78	0.76
C	15	0.85	0.84	0.83	0.82
D	16	0.87	0.86	0.99	0.84

0	6.4	Draw a ring around the anomalous result for student \mathbf{D} in Table 5.

| 0 | 6 | 5 |
| :--- | :--- | :--- | What should the students do with the anomalous result?

\qquad
\qquad

0	6	6

\qquad
\qquad

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{7}$	Give two conclusions about reaction time from the results in Table 5.

Do not write

1
\qquad

2 \qquad
\qquad

0	6	8	Suggest two ways the investigation could be improved to produce valid results.

1
\qquad
2 \qquad
\square

Turn over for the next question

0	$\mathbf{7}$	A plant shoot is made of several tissues.

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$

Tick (\checkmark) one box.

A group of organs with one function

Cells with a similar structure and function

The organ systems in an organism

| $\mathbf{0}$ | $\mathbf{7} .2$ |
| :--- | :--- | $\mathbf{2}$ What is the name of the tissue at the growing tip of a plant shoot?

Tick (\checkmark) one box.

Meristem

Phloem

Xylem

0	7.	3

Give one other reason plant cells divide by mitosis.
Do not refer to growth in your answer.
\qquad
\qquad

Figure 9 shows a cell cycle

Figure 9

0	$\mathbf{7}$.	$\mathbf{4}$ Which two processes happen during cell growth in the cell cycle?

Tick (\checkmark) two boxes.

The chromosomes are copied

The chromosomes separate

The cytoplasm divides in two

The nucleus divides

The organelles increase in number

Question 7 continues on the next page

0	$\mathbf{7}$	$\mathbf{5}$	In mitosis and meiosis cells divide to produce new cells.

Cell division by meiosis produces gametes.

Figure 10 shows a cell dividing by mitosis and a different cell dividing by meiosis.

Figure 10

Cell dividing by mitosis

Cell dividing by meiosis

11001100

me

Chromosome

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{6}$ A scientist investigated cell division in the growing tip of a plant shoot. |
| :--- | :--- | :--- | :--- |

The scientist recorded data at different distances from the tip of the shoot.

Table 6 shows the results.

Table 6

Distance from shoot tip in $\mathbf{m m}$	Mean cell length in $\boldsymbol{\mu \mathrm { m }}$	Percentage (\%) of cells dividing
5	22	13
10	23	9
20	39	4
30	77	0
40	116	0

Give two conclusions from the data in Table 6.

1
\qquad
2 \qquad
\qquad

Turn over for the next question

0	8	Figure 11 shows a transverse wave.

Figure 11

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ Which arrow shows the amplitude of the wave?

Tick (\checkmark) one box.
P

Q

R

S \square
T

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{2}$ Which arrow shows the wavelength of the wave?

Tick (\checkmark) one box.
P

Q

R \square
S \square
T \square

Question 8 continues on the next page

A teacher demonstrated waves on a string.
Figure 12 shows the apparatus used.

Figure 12

This is the method used.

1. Switch on the signal generator and vibration generator so the string vibrates up and down.
2. Move the wooden bridge until a clear wave pattern is formed between the wooden bridge and the vibration generator.
3. Use a metre rule to measure the length of the string between the wooden bridge and the vibration generator.
4. Record the frequency of the wave from the signal generator.
5. Record the number of loops in the wave pattern. The wave pattern shown in

Figure 12 has one loop.
6. Change the frequency on the signal generator until a new wave pattern is formed.
7. Repeat steps 4 to 6.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ Give one control variable in this demonstration. |
| :--- | :--- | :--- | :--- |

\qquad

| 0 | 8 |
| :--- | :--- | .4 The length of the string between the vibration generator and the wooden bridge was

Do not write about 1.5 m

The teacher used a metre rule to measure the length of the string.
Suggest two reasons why making an accurate measurement was difficult.
[2 marks]

1
\qquad

2 \qquad
\qquad

Question 8 continues on the next page

Table 7 shows the results.

Table 7

Frequency in Hz	Wave pattern on 1.50 m string	Number of loops in wave pattern	Wavelength in \mathbf{m}
10	\ldots	1	3.00
20		2	1.50
30		5	1.00
40			5

0	8	5

\qquad
\qquad

0	8	6	Each loop of the wave pattern is the length of half a wavelength.

Determine wavelength \mathbf{X} in Table 7.
\qquad
\qquad
\qquad
Wavelength $\mathbf{X}=$ m

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{7}$	Calculate the period of the wave when the frequency was 30 Hz

Give your answer to 2 significant figures.
Use the Physics Equations Sheet.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Period $(2$ significant figures $)=$ \qquad s

0	9	Plants absorb light to photosynthesise.

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{1}$ Complete the word equation for photosynthesis.

\qquad

Light intensity affects the rate of photosynthesis.

Figure 13 shows some of the equipment used to measure the rate of photosynthesis.

Figure 13

| 0 | $\mathbf{9}$. | 2 |
| :--- | :--- | :--- | of photosynthesis.

Use the equipment in Figure 13 and other laboratory equipment.
\qquad

Question 9 continues on the next page

Algal cells photosynthesise.
Scientists investigated the effect of light intensity on algal cells.
The algal cells were placed in different light intensities.

Table 8 shows the number of extra algal cells after two days.

Table 8

Light intensity in lux	Number of EXTRA algal cells after two days
0	no extra cells
250	1.00×10^{6}
500	1.65×10^{6}
750	2.15×10^{6}
1000	2.40×10^{6}
1250	2.50×10^{6}
1500	2.50×10^{6}

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{3}$ The initial number of algal cells was 200000 |
| :--- | :--- | :--- | :--- |

Calculate the total number of algal cells after two days when the light intensity was 500 lux
\qquad
\qquad
\qquad
Total number of algal cells = \qquad

0	9	4	Plot the data from Table 8 on Figure 14.

The first two points have been plotted.
Draw a line of best fit.

Figure 14

0	9	5	Give two conclusions from the results.

Use information from Table 8.

1 \qquad
\qquad

2 \qquad
\qquad
Question 9 continues on the next page

Do not write

| 0 | $\mathbf{9} .6$ | 6 |
| :--- | :--- | :--- | of algal cells.

\qquad
\qquad
\qquad

END OF QUESTIONS

There are no questions printed on this page

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

