Please write clearly ir	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.
• • •	

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

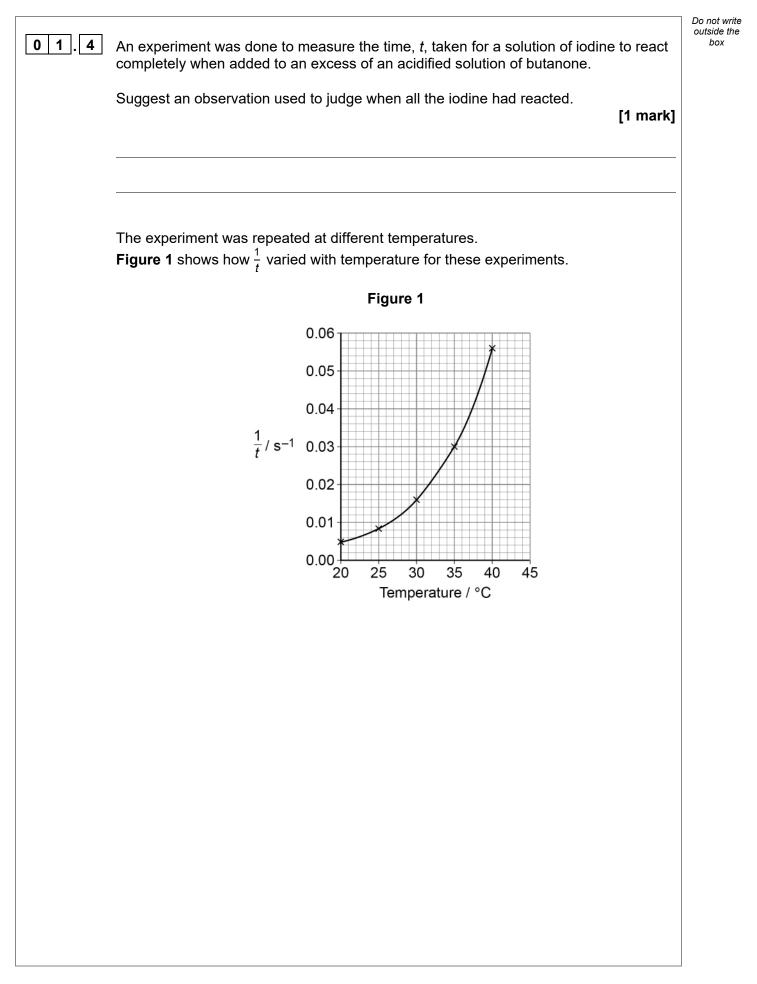
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	


	Answer all questions in the spaces provided.
0 1 A	An acidified solution of butanone reacts with iodine as shown.
	$CH_{3}CH_{2}COCH_{3} + I_{2} \rightarrow CH_{3}CH_{2}COCH_{2}I + HI$
0 1.1	Draw the displayed formula for CH ₃ CH ₂ COCH ₂ I
C	Give the name of CH ₃ CH ₂ COCH ₂ I [2 marks]
[Displayed formula
Ν	Name

0 1.2	The rate equation for the reaction is			
	$rate = k[CH_3CH_2COCH_3][H^+]$			
Table 1 shows the initial concentrations used in an experiment.				
	Table 1			
		CH ₃ CH ₂ COCH ₃	I 2	H⁺
	Initial concentration / mol dm ⁻³	4.35	0.00500	0.825
	The initial rate of reaction in this expe	eriment is 1.45×10⁻	⁻⁴ mol dm ⁻³ s ⁻¹	
	Calculate the value of the rate consta	ant, <i>k</i> , for the reaction	on and give its	
				[3 marks]
		k		
	Uni	its		
0 1 . 3	Calculate the initial rate of reaction w	hen all of the initial	concentration	s are halved. [1 mark]
	Initial rate of reaction			_ mol dm⁻³ s⁻¹
	Question 1 continue	es on the next pag	e	

Turn over ►

0 1.5	Describe and explain the shape of the graph in Figure 1 . [3 marks]	Do not write outside the box
0 1.6	Deduce the time taken for the reaction at 35 °C [1 mark]	
	Times	
	Question 1 continues on the next page	

Turn over 🕨

0 1.7

For a different reaction, **Table 2** shows the value of the rate constant at different temperatures.

Та	bl	е	2
	~	U	_

Experiment	Temperature / K	Rate constant / s⁻¹
1	$T_1 = 303$	$k_1 = 1.55 \times 10^{-5}$
2	<i>T</i> ₂ = 333	$k_2 = 1.70 \times 10^{-4}$

This equation can be used to calculate the activation energy, E_a

$$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Calculate the value, in kJ mol⁻¹, of the activation energy, E_a

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[5 marks]

Do not write outside the

box

*E*_a _____ kJ mol⁻¹

0 1.8	Name and outline the mechanism for the reaction of butanone with KCN followed by dilute acid.	Do not write outside the box
	[5 marks]	
	Name of mechanism	
	Outline of mechanism	
		21
	Turn over for the next question	
	Turn over ►	1

			Do not write outside the box
0 2	Tetrafluoroethene is made from chlorodifluoromethane in this reversib		DOX
	$2 \operatorname{CHClF}_2(g) \rightleftharpoons \operatorname{C}_2\operatorname{F}_4(g) + 2 \operatorname{HCl}(g) \qquad \Delta H = +128$	kJ mol⁻¹	
	A 2.00 mol sample of CHClF ₂ is placed in a container of volume 23.2 σ When equilibrium is reached, the mixture contains 0.270 mol of CHClF		
02.1	Calculate the amount, in moles, of C_2F_4 and of HCl in the equilibrium r	nixture. [2 marks]	
	Amount of C ₂ F ₄	mol	
	Amount of HCl	mol	
02.2	Give an expression for K_c for this equilibrium.	[1 mark]	
	Kc		

02.3	Calculate a value for K_c	Do not write outside the box
	Give its units.	
	[3 marks]	
	K _c Units	
02.4	State and explain the effect of using a higher temperature on the equilibrium yield of	
	tetrafluoroethene. [3 marks]	
	Effect on yield	
	Explanation	
	Question 2 continues on the next page	

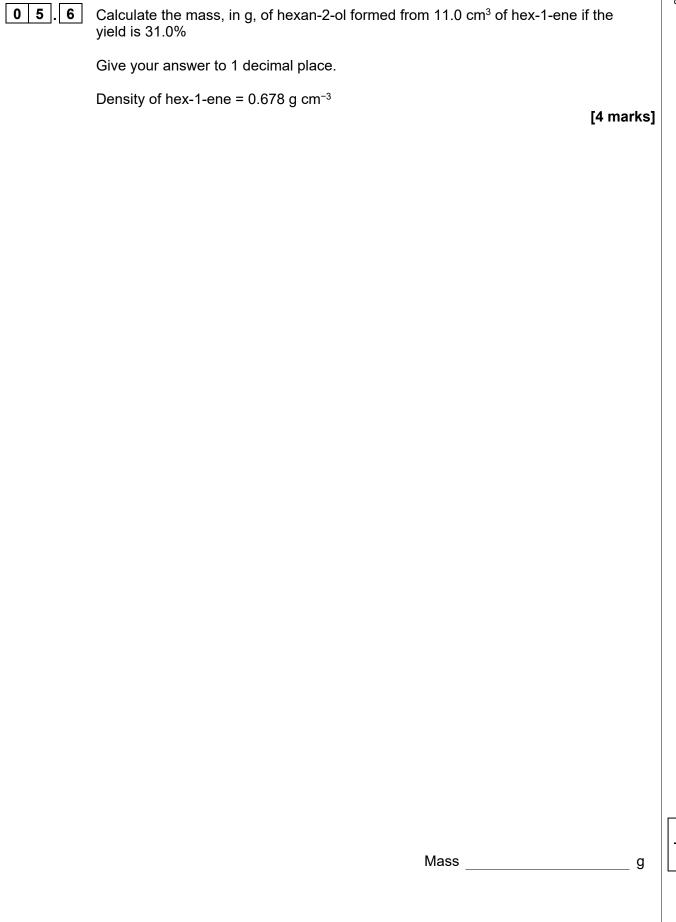
			Do not write
02.5	Chemists provided evidence that was used to support a ban on the use of chlorodifluoromethane as a refrigerant.		outside the box
	Many refrigerators now use pentane as a refrigerant.		
	State the environmental problem that chlorodifluoromethane can cause.		
	Give one reason why pentane does not cause this problem.	[2 marks]	
	Environmental problem		
	Reason why pentane does not cause this problem		
			11

		Do not wr
0 3	This question is about 2-methylbut-1-ene.	outside th box
0 3.1	Name the mechanism for the reaction of 2-methylbut-1-ene with concentrated sulfuric acid.	
	Outline the mechanism for this reaction to form the major product. [5 marks]]
	Name of mechanism	_
	Outline of mechanism to form major product	
0 3.2	Draw the structure of the minor product formed in the reaction in Question 03.1	
	Explain why this is the minor product.	
	[3 marks]]
	Structure of minor product	
	Explanation	-
		-
		-
		-

IB/M/Jun22/7405/2

03.3	Draw the skeletal formula of a functional group isomer of 2-methylbut-1-ene.	[1 mark]	Do not write outside the box
03.4	2-methylbut-1-ene can form a polymer.		
	State the type of polymerisation.		
	Draw the repeating unit for the polymer formed.	[2 marks]	
	Type of polymerisation		
	Repeating unit		
			11

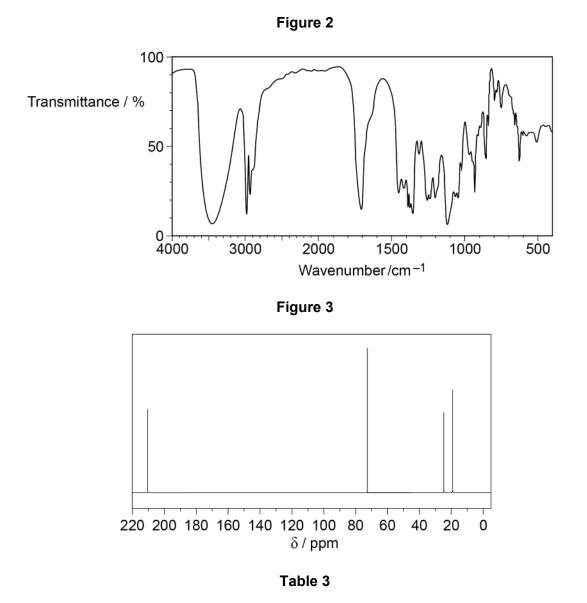
04	Proteins are polymers made from amino acids. Part of the structure of a protein is shown.	Do not write outside the box
	-Cys-Ser-Asp-Phe-	
	Each amino acid in the protein is shown using the first three letters of its name.	
04.1	Identify the type of protein structure shown. [1 mark]	
	Tick (✓) one box.	
	Primary	
	Secondary	
	Tertiary	
04.2	Draw a structure for the –Cys–Ser– section of the protein. Use the Data Booklet to help you answer this question. [2 marks]	
	Question 4 continues on the next page	


		Do not write outside the
0 4 . 3	Name the other substance formed when two amino acids react together to form part of a protein chain.	box
	[1 mark]	
	The general structure of an amino acid is shown.	
	H ₂ N-CH-COOH	
	R	
	R represents a group that varies between different amino acids. R groups can interact and contribute to protein structure.	
04.4	Explain why the strength of the interaction between two cysteine R groups differs from the strength of the interaction between a serine R group and an aspartic acid R group.	
	Use the Data Booklet to help you answer this question.	
	[4 marks]	
0 4 5	Deduce the type of interaction that occurs between a lysine R group and an aspartic acid R group.	
	[1 mark]	
		9

0 5		nis question is about the preparation of hexan-2-ol. exan-2-ol does not mix with water and has a boiling point of 140 °C
	He	exan-2-ol can be prepared from hex-1-ene using this method.
	а	Measure out 11.0 cm ³ of hex-1-ene into a boiling tube in an ice bath.
	b	Carefully add 5 cm ³ of concentrated phosphoric acid to the hex-1-ene.
	С	After 5 minutes add 10 cm ³ of distilled water to the mixture and transfer the boiling tube contents to a separating funnel.
	d	Shake the mixture and allow it to settle.
	е	Discard the lower (aqueous) layer.
	f	Add a fresh 10 cm ³ sample of distilled water and repeat steps d and e .
	g	Transfer the remaining liquid to a beaker.
	h	Add 2 g of anhydrous magnesium sulfate and allow to stand for 5 minutes.
	i	Filter the mixture under reduced pressure.
	j	Distil the filtrate and collect the distillate that boils in the range 130–160 $^{\circ} ext{C}$
0 5.1		is important to wear eye protection and a lab coat when completing this experiment. uggest, with a reason, one other appropriate safety precaution for this experiment. [2 marks]
	Pr	ecaution
	Re	eason
0 5.2	Gi	ve a reason for adding the distilled water in steps c and f . [1 mark]
0 5.3	Gi	ve a reason for adding anhydrous magnesium sulfate in step h . [1 mark]
		Question 5 continues on the next page

0 5.4	Complete and label the diagram of the apparatus used to filter the mixture under reduced pressure in step i .	Do not write outside the box
	[2 marks]	
	To vacuum pump	
0 5.5	Identify the most likely organic impurity, other than hex-1-ene, in the distillate collected in step j .	
	Suggest one reason why it could be difficult to remove this impurity. [2 marks]	
	Impurity	
	Reason	

Turn over ►


12

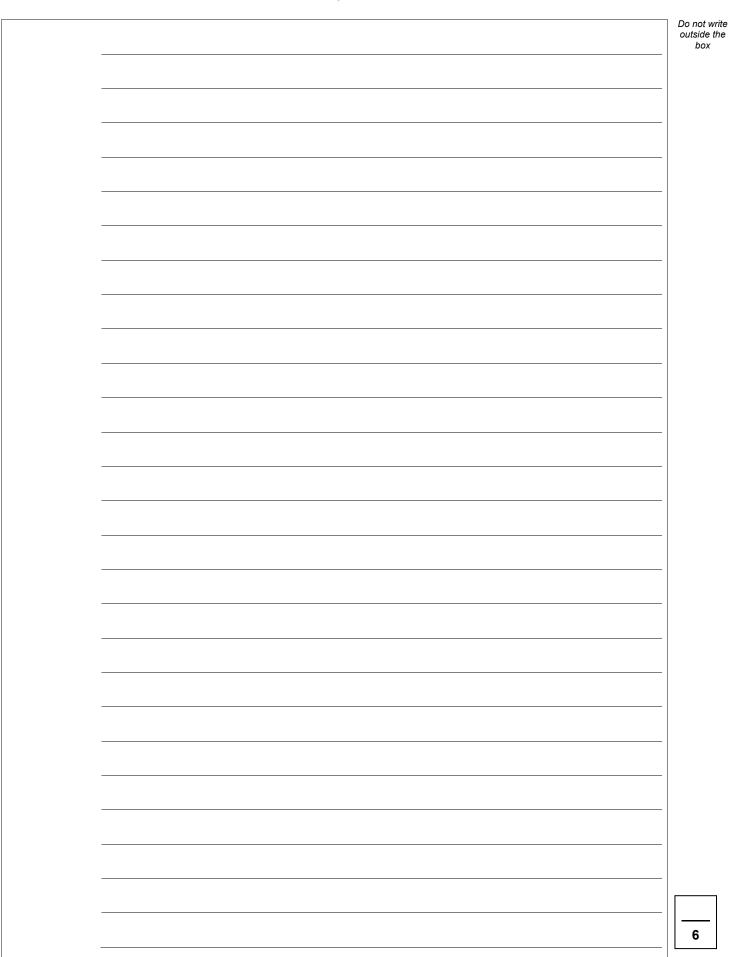
Do not write outside the box This question is about compound X with the empirical formula C₂H₄O

Figure 2 shows the infrared spectrum of X.

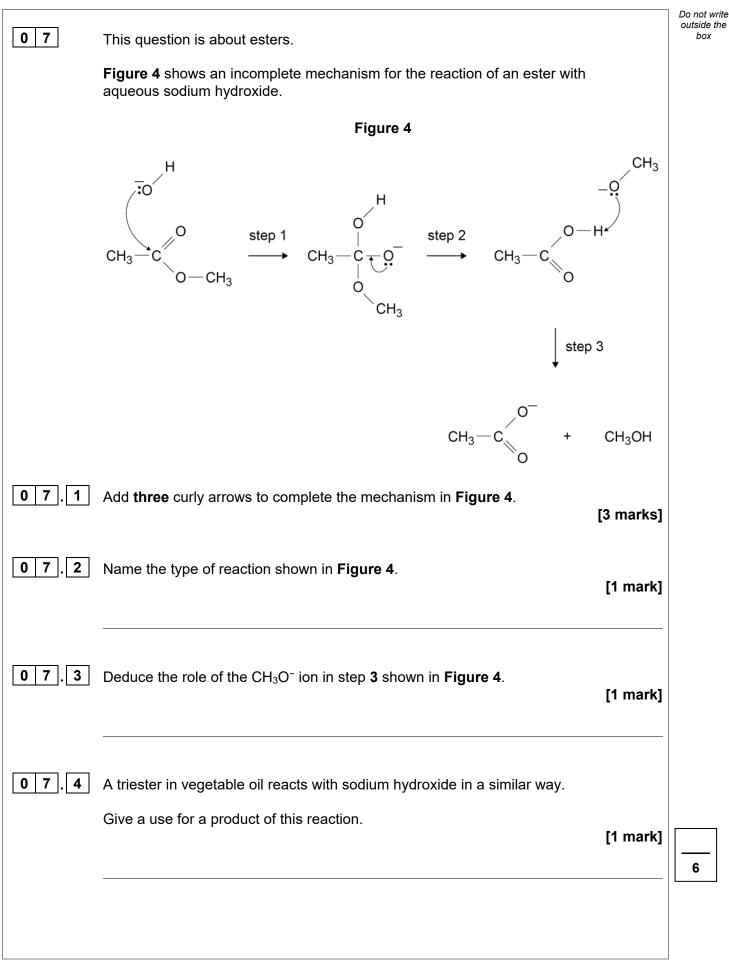
Figure 3 shows the ¹³C NMR spectrum of **X**.

The ¹H NMR spectrum of **X** shows four peaks with different chemical shift values. **Table 3** gives data for these peaks.

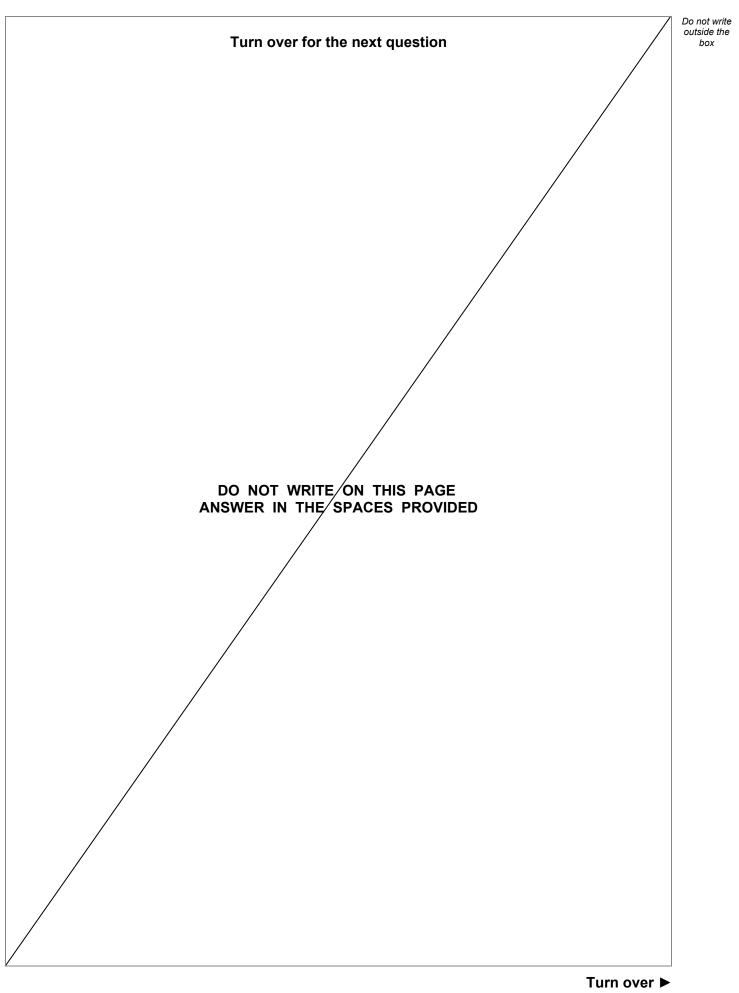
Chemical shift δ / ppm	3.9	3.7	2.1	1.2
Splitting pattern	quartet	singlet	singlet	doublet
Integration value	1	1	3	3



06


Do not write outside the

the structure of compound X .	[6 marks]



IB/M/Jun22/7405/2

0 8	Benzene reacts with methanoyl chloride (HCOCl) in the presence of a catalyst.	Do not write outside the box
0 8.1	Give an equation for the overall reaction when benzene reacts with methanoyl chloride.	
	Name the organic product. [2 marks]	
	Equation	
	Name	
08.2	Identify the catalyst needed in this reaction. Give an equation to show how the catalyst is used to form the electrophile, [HCO] ⁺	
	[2 marks]	
	Equation	
08.3	Outline the mechanism for the reaction of benzene with the electrophile, [HCO] ⁺ [3 marks]	
		7

		Do not write outside the
09	This question is about olive oil.	box
	A sample of olive oil is mainly the unsaturated fat Y mixed with a small amount of inert impurity.	
	The structure of Y in the olive oil is shown. Y has the molecular formula $C_{57}H_{100}O_6$ ($M_r = 880$).	
	The amount of Y is found by measuring how much bromine water is decolourised by a sample of oil, using this method.	
	 Transfer a weighed sample of oil to a 250 cm³ volumetric flask and make up to the mark with an inert organic solvent. Titrate 25.0 cm³ complex of the clive cill colution with 0.025 mel dm⁻³ Br (cg) 	
	• Titrate 25.0 cm ³ samples of the olive oil solution with 0.025 mol dm ⁻³ Br ₂ (aq).	
0 9 . 1	A suitable target titre for the titration is 30.0 cm^3 of $0.025 \text{ mol dm}^{-3} \text{ Br}_2(\text{aq})$.	
	Justify why a much smaller target titre would not be appropriate.	
	Calculate the amount, in moles, of bromine in the target titre. [2 marks]	
	Justification	
	Amount of bromine mol	

Calculate a suitable mass of olive oil to transfer to the volumetric flask using your answer to Question 09.1 and the structure of Y.
 Assume that the olive oil contains 85% of Y by mass.

(If you were unable to calculate the amount of bromine in the target titre, you should assume it is 6.25×10^{-4} mol. This is **not** the correct amount.)

[5 marks]

Do not write outside the

box

Mass of olive oil _____

Question 9 continues on the next page

g

		Do not write outside the
	The olive oil solution can be prepared using this method.Place a weighing bottle on a balance and record the mass, in g, to 2 decimal places.	box
	 Add olive oil to the weighing bottle until a suitable mass has been added. Record the mass of the weighing bottle and olive oil. 	
	 Pour the olive oil into a 250 cm³ volumetric flask. Add organic solvent to the volumetric flask until it is made up to the mark. 	
	 Place a stopper in the flask and invert the flask several times. 	
09.3	Suggest an extra step to ensure that the mass of olive oil in the solution is recorded accurately.	
	Justify your suggestion. [2 marks]	
	Extra step	
	Justification	
09.4	State the reason for inverting the fleek enverel times	
0 9 . 4	State the reason for inverting the flask several times. [1 mark]	

[2 marks]

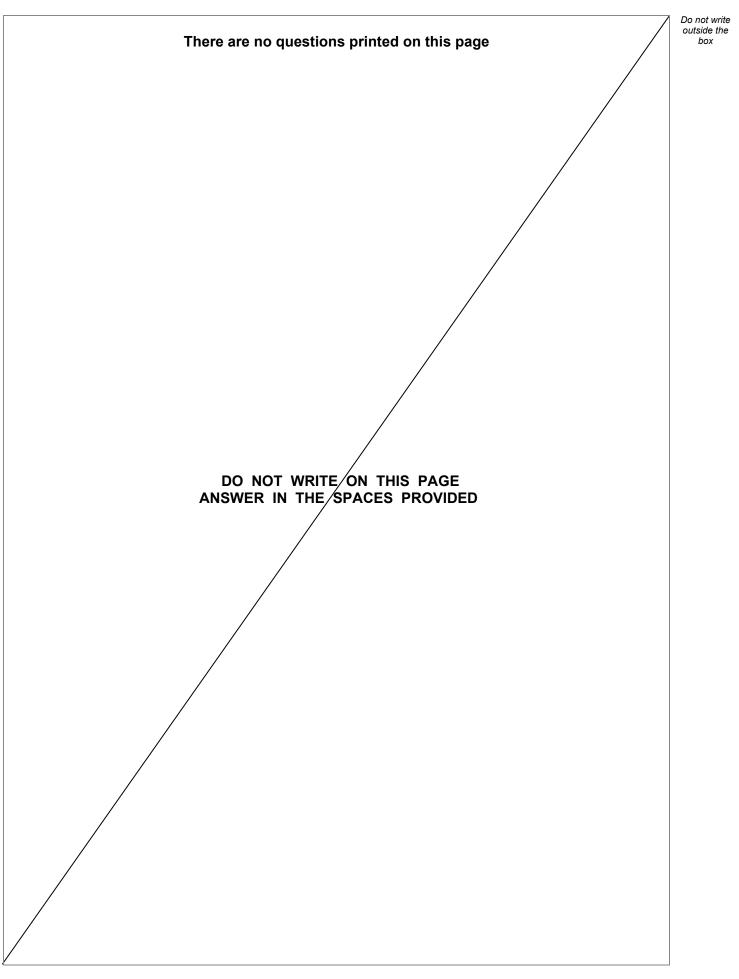
0 9 5

A sample of the olive oil was dissolved in methanol and placed in a mass spectrometer. The sample was ionised using electrospray ionisation. Each molecule gained a hydrogen ion (H⁺) during ionisation. The spectrum showed a peak for an ion with ^m/_z = 345 formed from an impurity in the olive oil. The ion with ^m/_z = 345 was formed from a compound with the empirical formula C₅H₁₀O Deduce the molecular formula of this compound.

Show your working.

Molecular formula

Turn over for the next question


Turn over ►

1 0	This question is about the reaction scheme shown.	Do not write outside the box
	$\begin{array}{c} CH_3 \\ step 1 \\ CH_3 \\ NO_2 \\ NO_2 \\ NH_2 \\ Amine A \end{array} \xrightarrow{CH_3} \underbrace{step 3}_{NH_2} \\ NHCOCH_3 \\ CH_3 \\ CH$	
	step 4 CH_2Cl CH_2NH_2 $step 5$ OH_2NH_2 Amine B	
10.1	State the reagents needed for step 1 and the reagents needed for step 2. [3 marks] step 1	
	step 2	
10.2	Give the name of the mechanism for the reaction in step 3 . [1 mark]	

not write side the box		Name the reagent for step 4 .	1 0 . 3
		State a necessary condition for step 4 .	
	[2 marks]		
		Reagent	
		Condition	
		Amine A is formed in stop 2 and amine P is formed in stop 5	10.4
		Amine A is formed in step 2 and amine B is formed in step 5 .	1 0.4
	[2 marks]	Explain why the yield of B in step 5 is less than the yield of A in step 2 .	
		Explain why amine B is a stronger base than amine \mathbf{A}	
	[2 marks]	Explain why amine B is a subliger base than amine A .	
_			
0			
		END OF QUESTIONS	
0		Explain why amine B is a stronger base than amine A .	10.5

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

