GCSE
 MATHEMATICS
 8300/3H

Higher Tier Paper 3 Calculator
Mark scheme
June 2022
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	4.301		B1

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2}$	$\binom{-7}{10}$		B1

Q	Answer	Mark	Comments
3(a)	D	B1	

Q	Answer	Mark	Comments
3(b)	B	B1	

Q	Answer	Mark	Comments	
$\mathbf{*} \mathbf{6}(\mathbf{a})$	-1 and 5	B1	either order	
	Additional Guidance			
	Ignore $x=$ written before answers	B0		
	$(-1,0)$ or $(5,0)$			

Q	Answer \quad Mark		Comments	
6(b)	$(2,-9)$	B2	B1 $x=2$ or $(2, \ldots)$ or $y=-9$ or $(\ldots$, or $(x-2)^{2}-9$ B1ft correct y-coor coordinate with $x \neq$ $\operatorname{SC1}(-9,2)$	ir x -
	Additional Guidance			
	If answer line is blank, check diagram for indication of x or y values			
	$(3,-9)$			B1
	$(3,-8)$			B1ft
	$(1,-8)$			B1ft
	(2.5, -8.75)			B1ft
	$(0,-5)$			B0ft

Q	Answer	Mark	Comments	
8	$330 \div(3+2)$ or $330 \div 5$ or 66	M1	$\text { oe eg } \frac{330}{5}$	
	their 66×2 or 132	M1dep	$\begin{aligned} & \text { oe } \\ & \frac{2}{5} \times 330 \text { scores M2 } \end{aligned}$	
	$294 \div 7 \text { or } 42$ or $294 \div 7 \times 3 \text { or } 126$	M1	oe eg $\frac{294}{7}$ or $\frac{3}{7} \times 294$	
	132 and 126 and A	A1		
	Additional Guidance			
	132 and 88.2 and A			M1M1M0A0

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comments	
$\begin{gathered} 9 \\ \text { cont } \end{gathered}$	Alternative method 5 - distance for Adil in 24s			
	28800×24 or 691200 or $28.8 \div 60 \div 60$ or 0.008 or 28.8×24 or 691.2	M1	$\text { oe eg } \frac{3456}{5}$	
	their $691200 \div 60 \div 60$ or their $0.008 \times 1000 \times 24$ or their $691.2 \times 1000 \div 60 \div 60$ or 192	M1dep	oe eg $28800 \times 24 \div 3600$	
	192 and Tom	A1		
	Additional Guidance			
	Up to M2 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
	Ignore all units			
	Allow other correct comparisons eg 500 and 480 (this is metres per minute) eg 500 and 480 and Tom			M1M1 M1M1A1
	$200 \mathrm{~m}=0.2 \mathrm{~km}, 24 \mathrm{~s}=24 \div 60 \div 60=\frac{1}{150}$ hour, $0.2 \div \frac{1}{150}=30$ and Tom			M1M1A1
	$\frac{200 \div 1000}{24}=\frac{1}{120}(\text { or } 0.0083 \ldots)$			M1

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{1 0}$	$3.55 \leqslant$ mass <3.65	B1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{1 1}$	trapezium	B1	

Q	Answer	Mark	Comments	
12(a)	$\begin{aligned} & \frac{180-90}{2} \\ & \text { or } \\ & \tan ^{-1} \frac{6}{6} \\ & \text { or } 45 \end{aligned}$	M1	oe may be seen on eg $\sin ^{-1}\left(\frac{6}{\sqrt{72}}\right)$	
	315	A1	SC1 answer of 135 (bearing of C from A)	
	Additional Guidance			
	$\tan \frac{6}{6}$ unless recovered			M0

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{1 3}$	$2 \sqrt{5} a$	B1	

Q	Answer	Mark	Comments	
15	Alternative method 1			
	$158460 \div 278$ or 570	M1		
	$168720 \div$ their 570	M1dep		
	296	A1		
	Alternative method 2			
	$\begin{aligned} & 158460 \div 168720 \\ & \text { or } 0.939 \ldots \text { or } 0.94 \end{aligned}$	M1		
	$278 \div$ their 0.939 \ldots	M1dep		
	296	A1		
	Alternative method 3			
	$168720 \div 158460$ or $1.0647 \ldots$ or 1.065 or 1.06	M1	$\begin{gathered} \text { oe eg } 1+\frac{168720-158460}{158460} \\ \text { or } 1+\frac{10260}{158460} \end{gathered}$	
	$278 \times$ their $1.0647 \ldots$	M1dep		
	296	A1		
	Additional Guidance			
	$278 \times 1.065=296$			M1M1A1
	$278 \times 1.065=296.07$ with 296 on answer line is evidence of premature rounding in their working			M1M1A0
	$168720 \div 158460=1.06,278 \times 1.06=294.68$ with answer 294			M1M1A0
	Embedded answer eg $168720 \div 296=570$			M1M1A0

Q	Answer	Mark	Comments	
16(b)	It could be less than or greater than Virat's estimate (3rd box ticked) and statement that area is larger but depth is smaller	B2	B1 It is less than Virat's estimate (1st box ticked) and statement that depth is smaller or It is greater than Virat's estimate (2nd box ticked) and statement that area is larger or It could be less than or greater than Virat's estimate (3rd box ticked) and statement that depth is smaller or It could be less than or greater than Virat's estimate (3rd box ticked) and statement that area is larger	
	Additional Guidance			
	For B2 their statement must refer to larger area and smaller depth			
	For B1 their statement must correctly refer to larger area or smaller depth for their box ticked			
	Examples of statements implying actual depth is smaller: height is less depth is lower it is shallower Virat's estimate of the depth is bigger			
	Examples of statements implying actual area is larger: the width is bigger cross section is bigger shape is greater Virat's estimate of the area is smaller			
	The reservoir could be bigger or smaller			B0
	The reservoir is larger			B0
	We do not know the depth			B0

Q	Answer	Mark	Comments	
17(a)	$8 \times 4 \times 5$	M1		
	160	A1		
	Additional Guidance			
	$\frac{1}{8} \times \frac{1}{4} \times \frac{1}{5}=160(\text { recovered })$			M1A1
	$\frac{1}{8} \times \frac{1}{4} \times \frac{1}{5}$			MOAO

Q	Answer	Mark	Comm	
17(b)	$\frac{1}{160}$ or 0.00625 or 0.625% or 6.25×10^{-3}	B1ft	oe fraction, decimal or $\mathrm{ft} \frac{1}{\text { their answer to (a) }}$	
	Additional Guidance			
	Accept decimal or percentage answers rounded to 2 sf or better for ft eg ft 17 gives $0.058823529 \ldots$ so accept 0.059 or better			
	Ignore an attempt to convert a fraction to a decimal or round a decimal or percentage after a correct value is seen			
	$1: 160$ or 1 in 160 or 1 out of 160			B0
	$\frac{1}{160}+\frac{1}{160}=\frac{2}{320}=\frac{1}{160}$			B0
	$\frac{1}{160} \times \frac{1}{160}=\frac{2}{320}=\frac{1}{160}$			B0

Q	Answer	Mark	Comments
18	Alternative method 1 - using angles around \mathbf{O} and angles inside arrowhead		
	$A C O=90-83$ or $A C O=7$	M1	may be seen on diagram
	Acute $B O C=2 \times 28$ or acute $B O C=56$	M1	may be seen on diagram
	Reflex BOC = 360 - their 56 or reflex $B O C=304$	M1dep	may be seen on diagram dep on 2nd M1
	```ABO=360 - their 304 - their 7- 28 or ABO=21```	M1dep	may be seen on diagram dep on M3
	$A B O=21 \text { and } A C O=7$   and $21: 7=3: 1$	A1	all angle values must be seen
	Alternative method 2 - with line OA added		
	$A C O=90-83$ or $A C O=7$	M1	may be seen on diagram
	$O A C=7$   or $A B O+A C O=28$	M1dep	may be seen on diagram
	$O A B=28-7 \text { or } O A B=21$   or $A B O=28-7$	M1dep	may be seen on diagram dep on M2
	$A B O=21$	M1dep	may be seen on diagram dep on M3
	$A B O=21 \text { and } A C O=7$   and $21: 7=3: 1$	A1	all angle values must be seen

Mark scheme continues on the next page

Q	Answer	Mark	Comments
$\begin{gathered} 18 \\ \text { cont } \end{gathered}$	Alternative method 3 - using alternate segment theorem		
	$A C O=90-83$ or $A C O=7$	M1	may be seen on diagram
	Acute $B O C=2 \times 28$   or acute $B O C=56$	M1	may be seen on diagram
	$A B C=83$	M1	may be seen on diagram
	$\begin{aligned} & O B C=\frac{180-\text { their } 56}{2} \\ & \text { or } O B C=62 \\ & \text { and } \\ & A B O=83-\text { their } 62 \text { or } A B O=21 \end{aligned}$	M1dep	may be seen on diagram, dep on 2nd and 3rd M1
	$A B O=21$ and $A C O=7$ and $21: 7=3: 1$	A1	all angle values must be seen

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comments	
$\begin{gathered} 18 \\ \text { cont } \end{gathered}$	Alternative method 4 - using triangles $O B C$ and $A B C$			
	$A C O=90-83$ or $A C O=7$	M1	may be seen on diagram	
	Acute $B O C=2 \times 28$ or acute $B O C=56$	M1	may be seen on diagram	
	$O B C=\frac{180-\text { their } 56}{2}$   or $O B C=62$	M1dep	may be seen on diagram or angle OCB dep on 2nd M1	
	$A B O=180-28-62-62-7$   or $A B O=21$	M1dep	oe   may be seen on diag dep on M3	
	$A B O=21$ and $A C O=7$ and $21: 7=3: 1$	A1	all angle values mus	seen
	Additional Guidance			
	If angles are not correctly positioned on the diagram they must be correctly identified in the working, eg BOC=56 is M0 if not correctly positioned on the diagram and not identified as acute			
	$A C O=7$ and $A B O: A C O=21: 7$ with no other correct working			M1M0M0M0A0


Q	Answer	Mark	Comments
19(a)	Alternative method 1 - horizontal split		
	$x(x-2)$ and $3(x-5)$	M1	oe may be seen as two areas
	$x^{2}-2 x+3 x-15(=75)$	M1dep	oe expression with all brackets expanded
	$x^{2}-2 x+3 x-15=75$   and $x^{2}+x-90=0$   or $x^{2}+x-15=75$   and $x^{2}+x-90=0$	A1	with full working seen
	Alternative method 2 - vertical split		
	$(x-5)(x+1)$ and $5(x-2)$	M1	oe may be seen as two areas
	$x^{2}-5 x+x-5+5 x-10(=75)$   or $x^{2}-4 x-5+5 x-10(=75)$	M1dep	oe expression with all brackets expanded
	$x^{2}-5 x+x-5+5 x-10=75$   and $x^{2}+x-90=0$   or $x^{2}-4 x-5+5 x-10=75$   and $x^{2}+x-90=0$	A1	with full working seen
	Alternative method 3-large rectangle subtract $3 \times 5$		
	$x(x+1)$ and $3 \times 5$	M1	oe may be seen as two areas
	$x^{2}+x-15(=75)$	M1dep	oe expression with brackets expanded and $3 \times 5$ evaluated
	$\begin{aligned} & x^{2}+x-15=75 \\ & \text { and } x^{2}+x-90=0 \end{aligned}$	A1	with full working seen

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comments		
19(a) cont	Alternative method 4 - split into three areas				
	$3(x-5)$ and $(x-2)(x-5)$ and $5(x-2)$	M1	oe may be seen as three areas		
	$\begin{aligned} & 3 x-15+x^{2}-2 x-5 x+10+5 x- \\ & 10(=75) \end{aligned}$   or $\begin{aligned} & 3 x-15+x^{2}-7 x+10+5 x-10 \\ & (=75) \end{aligned}$	M1dep	oe expression with all brackets expanded		
	$\begin{aligned} & 3 x-15+x^{2}-2 x-5 x+10+5 x- \\ & 10=75 \\ & \text { and } x^{2}+x-90=0 \end{aligned}$   or $\begin{aligned} & 3 x-15+x^{2}-7 x+10+5 x-10= \\ & 75 \end{aligned}$   and $x^{2}+x-90=0$	A1	with full working	seen	
	Additional Guidance				
	Ignore attempts to solve the equation or substituting values for $x$				
	Condone missing end bracket for M1				
	Condone missing pairs of brackets if recovered eg $3 \times x-5$ recovered to $3 x-15$				


Q	Answer	Mark	Comments	
19(b)	$(x-9)(x+10)(=0)$   and answer 9	B2	B1 $(x-9)(x+10)$ and answer 9 and SC1 $(x+9)(x-10)$ and answer 10	
	Additional Guidance			
	If no response is seen, check part (a) for any creditworthy work			
	Answer 9 with no working can be awarded up to B2 from correct factorising seen in part (a)			
	Answer 9 from quadratic formula or completing the square			B1
	Answer 9 and -10 from quadratic formula or completing the square			B0
	Answer from trial and improvement only			B0


Q	Answer	Mark	Comments	
	Alternative method 1			
	$2496.96 \div 2448$ or 1.02	M1	implied by correct value for 2,3 or 4 years	
	$2496.96 \times(\text { their } 1.02)^{3}$   or   $2448 \times(\text { their } 1.02)^{4}$   or 2649.79...	M1dep	oe eg full year by year method shown	
	2649.77 or 2649.78 or 2649.79 or 2649.8(0)	A1	accept 2650(.00) with M2 awarded SC2 2702.78 or 2702.79 or 2702.8(0)	
20	Alternative method 2			
	$\begin{aligned} & (2496.96-2448) \div 2448 \\ & \text { or } 48.96 \div 2448 \text { or } 0.02 \text { or } 2 \% \end{aligned}$	M1		
	$2496.96 \times\left(1+\frac{\text { their 2 }}{100}\right)^{3}$   or $2448 \times\left(1+\frac{\text { their } 2}{100}\right)^{4}$   or 2649.79...	M1dep	oe eg full year by	od shown
	2649.77 or 2649.78 or 2649.79 or 2649.8(0)	A1	accept 2650(.00) SC2 2702.78 or	warded $2702.8(0)$
	Additional Guidance			
	Calculated by year, the amounts would be:   2 years 2546.89 or 2546.90   3 years 2597.82 or 2597.83 or 2597.84			
	Condone 2650.0			M1M1A1
	2546.89, 2597.83, 2649.78, 2702.77 do not award A mark if further work seen after correct answer			M1M1A0
	$\frac{48.96}{2496.96} \times 100=2 \% \text { is incorrect working }$			MOMOAO


Q	Answer	Mark	Commen	
21	$\frac{\sin x}{17}=\frac{\sin 64}{23}$   or $\sin x=\frac{17 \sin 64}{23}$   or $\sin x=\frac{15.279 \ldots}{23}$   or $\frac{\sin x}{17}=0.039 \ldots$   or $\sin x=0.66(4 \ldots)$	M1	oe $\frac{17}{\sin x}=\frac{23}{\sin 64}$   or $\frac{17}{\sin x}=[25.58,25.6$	
	$(x=) \sin ^{-1} \frac{17 \sin 64}{23}$   or $(x=) \sin ^{-1} 0.66(4 \ldots)$	M1dep		
	[41.29, 41.64] or 42   or 41 from correct working	A1		
	Additional Guidance			
	Answer from accurate drawing			MOMOAO


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{2 2}$	$3 x^{2}$	B1	



Q	Answer	Mark	Comments
24	$\sqrt[4]{81} \text { or } 81^{\frac{1}{4}} \text { or } k=3$	M1	may be seen on diagram and is implied by $p=9$
	(their value for $k)^{2}=2^{2}+c$   or $9=4+c$   or $c=5$	M1	does not need to be evaluated
	$r^{2}+\text { their } 5=43.44$   or   $\sqrt{43.44 \text { - their } 5}$ or $\sqrt{38.44}$	M1dep	oe equation dep on previous mark
	6.2	A1	
	Additional Guidance		
	Coordinate ( 2,9 ) implies $p=9$		


Q	Answer	Mark	Comments	
	$0.6 \times 10 \text { or } 6$   or   $4 \times 5$ or 20   or   $7.6 \times 5$ or 38   or   $1.6 \times 10$ or 16   or   $4 \times 2$ or 8   or   $4 \times 3$ or 12	M1	may be seen written on correct bar correct method for any frequency	
25	$\begin{aligned} & 0.6 \times 10+(122-120) \times 4 \\ & \text { or } 0.6 \times 10+2 \times 4 \end{aligned}$   or $0.6 \times 10+\frac{2}{5} \times 4 \times 5$   or $6+8$ or 14   or $16+38+\frac{3}{5} \times 4 \times 5 \text { or } 66$	M1dep	oe	
	$14 \times \frac{28000}{80}$   or $28000-66 \times \frac{28000}{80} \text { or } 23100$	M1dep	$\text { oe eg } 14 \times 350$ $28000-66 \times 350$	
	4900	A1	SC3 3850 or 6475	
	Additional Guidance			
	$0.3 \times 10+2 \times 4=11$ and $\frac{11}{80} \times 28000=3850$			SC3
	$1.3 \times 10+7.3 \times 5+4 \times 3=61.5$ and $28000-\frac{61.5}{80} \times 28000=6475$			SC3
	$\frac{6+8}{80} \times 28000 \text { or } \frac{14}{80} \times 28000$			M3


Q	Answer	Mark	Comments	
26(a)	$2^{3} \times 3 \times a^{2}$ or $24 a^{2}(=4056)$ or $\left(a^{2}=\right) \frac{4056}{2^{3} \times 3} \text { or }\left(a^{2}=\right) 169$   or $\sqrt{169}$	M1	oe eg $8 \times 3 \times a^{2}$	
	13	A1		
	Additional Guidance			
	Condone $a^{2} \times 24$ for M1			
	Fully correct prime factor decomposition with values 2, 2, 2, 3, 13, 13 shown without 13 chosen as the final answer			M1A0
	Embedded answer $2^{3} \times 3 \times 13^{2}$			M1A0
	$\pm 13$ or -13			M1A0
	$4056 \div 2^{3} \times 3$ unless recovered to 169			MOAO


Q	Answer	Mark	Comments	
26(b)	$2^{4} \times 3^{2} \times a^{3} \text { or } 144 a^{3}$   or $2^{4} \times 3^{2} \times(\text { their } 13)^{3}$   or $13 \times 4056 \times 2 \times 3$   or $52728 \times 6$   or $24336 \times 13$	M1	$16 \times 9 \times 2197$	
	316368	A1ft	ft their 13 , which must be an integer $>13$	
	Additional Guidance			
	eg 14 on answer line in part (a) can follow through to $144 \times 14^{3}=$ 395136			M1A1ft


Q	Answer	Mark	Comments	
	Alternative method 1: multiplies $(x-3)(x-4)$ first			
	$\begin{aligned} & x^{2}-3 x-4 x+12 \\ & \text { or } x^{2}-7 x+12 \end{aligned}$	M1	four terms with at least three correct implied by $x^{2}-7 x+k$ where $k$ is a nonzero constant	
	$\begin{aligned} & x^{3}-3 x^{2}-4 x^{2}+12 x+8 x^{2}-24 x- \\ & 32 x+96 \end{aligned}$   or $x^{3}-7 x^{2}+12 x+8 x^{2}-56 x+96$	M1dep	full expansion with correct multiplication of their 3 or 4 terms by $x$ and 8	
	$x^{3}+x^{2}-44 x+96$	A1		
27	Alternative method 2: multiplies $(x-3)(x+8)$ first			
	$\begin{aligned} & x^{2}-3 x+8 x-24 \\ & \text { or } x^{2}+5 x-24 \end{aligned}$	M1	four terms with at least three correct implied by $x^{2}+5 x+k$ where $k$ is a nonzero constant	
	$\begin{aligned} & x^{3}-3 x^{2}+8 x^{2}-24 x-4 x^{2}+12 x- \\ & 32 x+96 \end{aligned}$   or $x^{3}+5 x^{2}-24 x-4 x^{2}-20 x+96$	M1dep	full expansion with of their 3 or 4 term	ct multiplication and -4
	$x^{3}+x^{2}-44 x+96$	A1		
	Alternative method 3: multiplies $(x-4)(x+8)$ first			
	$\begin{aligned} & x^{2}-4 x+8 x-32 \\ & \text { or } x^{2}+4 x-32 \end{aligned}$	M1	four terms with at least three correct implied by $x^{2}+4 x+k$ where $k$ is a nonzero constant	
	$\begin{aligned} & x^{3}-4 x^{2}+8 x^{2}-32 x-3 x^{2}+12 x- \\ & 24 x+96 \end{aligned}$   or $x^{3}+4 x^{2}-32 x-3 x^{2}-12 x+96$	M1dep	full expansion with correct multiplication of their 3 or 4 terms by $x$ and -3	
	$x^{3}+x^{2}-44 x+96$	A1		
	Additional Guidance			
	Do not award A mark if further incorrect simplification or attempt to solve after correct answer seen			
	For method marks, terms may be given in a table with correct signs shown			


[^0]:    Copyright information
    AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

