

GCSE Mathematics

8300/3H – Paper 3 Higher Tier Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
М dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments	
	0.56	B1		
1	Ac	Iditional G	luidance	

	-1, 0, 1, 2, 3, 4	B1				
2	Additional Guidance					

	3.27	B1		
3	Ade	luidance		

	36°	B1				
4	4 Additional Guidance					

Question	Answer	Mark	Commer	nts
	At least two common factors of 72 and 120 from 2, 3, 4, 6, 8, 12, 24 or 72 = 2 (x) 2 (x) 2 (x) 3 (x) 3 or $120 = 2 (x) 2 (x) 2 (x) 3 (x) 5$	M1	May be seen on a diagram	n, eg factor tree
	At least two common multiples of 6 and 9 from 18, 36, 54	M1		
5	(HCF =) 24 selected from factors or $a = 24$ or (LCM =) 18 selected from multiples or $b = 18$	M1	oe eg HCF = 2 (x) 2 (x) 2 (x) 3 24 can be implied from their numerator oe eg LCM = 2 (x) 3 (x) 3 18 can be implied from their denominator oe eg $\frac{2 \times 2 \times 2 \times 3}{2 \times 3 \times 3}$	
	$1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33	A1	oe Accept $\frac{24}{18}$ Ignore further incorrect ca	ancelling
	Additional Guidance			
	HCF = 24 and LCM = 18			M1M1M1
	HCF = 24			M1M0M1
	LCM = 18			M0M1M1

Question	Answer	Mark	Comments		
	54	B1	May be on diagram		
	7.5 6	B2	May be on diagram B1 for 1 correct or for answers transposed	ł	
	Additional Guidance				
6	If answers are in wrong position on answer lines, check working and diagram for clear indication of possible transcription errors				
	eg $w = 9 \div 1.5 = 6$ in working, 9 on answer line			B1	
	$9 \div 1.5 = 6$ in working, 9 on answer line			B0	
	Answer line takes precedence over diagram eg $x = 54$ on diagram and $x = 81$ on answer line			B0	

Question	Answer	Mark	Commer	nts
	2 × 12 × 150 × 1.025 or 24 × 150 × 1.025 or 3690	M1	Investment A oe	
	or 2 × 12 × 150 × 0.025 or 24 × 150 × 0.025 or 90			
	1.03 × 3500		Investment B	
or 3605 oe M1 eg 0.03 × 350		oe eg 0.03 × 3500 + 3500 or	105 + 3500	
			May be implied from 1.03	² × 3500
	1.03 ² × 3500 or 1.03 × their 3605 or 1.0609 × 3500		oe Dependent on 2nd M1	
7	or 3713(.15)	M1dep		
	or 0.03 × their 3605 or 108(.15)			
	23.15	A1	Condone £23.15p	
	Ade	ditional G	auidance	
	If build up methods are used they mu	ist be com	plete	
	1% = 35 3% = 95 (error without showing method) 95 + 3500 or 3595			MO
	1% = 35 3% = 35 × 3 = 95 (error but correct method shown) 95 + 3500 or 3595			M1
	$1.03^3 \times 3500$ (full method incorrect bu	ut implies	1.03 × 3500)	M0M1M0

Question	Answer	Mark	Comments
	Alternative method 1 – Using gradie	ents	
	Gradient of $y = 3x + 7$ is 3 and $y = 3x + 4$ and gradient of $2y - 6x = 8$ is 3 or $6 \div 2$		May come from using points on line eg using (0, 7) and (1, 10) and $\frac{10-7}{1-0} = 3$ or correct calculation for gradient from points on line $2y - 6x = 8$ eg using (0, 4) and (1, 7) and $\frac{7-4}{1-0} = 3$ B2 for $y = 3x + 4$ and lines have same gradient
8(a)		В3	or $y = 3x + 4$ and gradient of $2y - 6x = 8$ is 3 or $6 \div 2$ or gradient of $y = 3x + 7$ is 3 and $y = 3x + 4$ B1 for gradient of $y = 3x + 7$ is 3 or $y = 3x + 4$ or gradient of $2y - 6x = 8$ is 3 or $6 \div 2$
	Alternative method 2 – Using coordi	nates and	distances
	Chooses a value for x and correctly evaluates the y value for both lines	M1	eg (0, 7) and (0, 4)
	Chooses a different value for x and correctly evaluates the y value for both lines	M1dep	eg (1, 10) and (1, 7)
	States that y values are a constant distance apart so parallel	A1	ое

	Alternative method 3 – Using simulta	Alternative method 3 – Using simultaneous equations				
	y = 3x + 4 or $y - 3x = 4$ or $2y = 6x + 14$ or $2y - 6x = 14$	M1	oe Equates coefficients in ar	ny form		
	Any attempt to eliminate both variables from their equations	M1dep				
	States simultaneous equations have no (real) solution and concludes parallel	A1				
	Ad	ditional G	Guidance			
	To award A mark on Alternative method 2, the working must be seen					
8(a)	y = 3x + 4 and lines have gradient of $3x$			B2		
cont	y = 3x + 4 and $3x$ identified in both equations			B2		
	Both lines have gradient 3x			B1		
	y = 3x + 7, gradient 3 and $y = 3x + 8$, gradient 3 (error in rearrangement)			B1		
	y = 3x + 8, gradient 3 (error in rearrangement)			B0		
	Parallel as both have same gradient			B0		
	2(3x+7)-6x=8	2(3x+7) - 6x = 8				
	6x + 14 - 6x = 8			N/1		
	14 = 8			M1		
	$y = 3x + 7$ and $y = \frac{8 + 6x}{2}$ are equated coefficients,			M1		
	Alternative method 3	Alternative method 3				

Question	Answer	Mark	Commer	nts	
0(h)	$3 \times -5 + 7$ or $-15 + 7$ or -8 or $(-5, -8)$ or $(-6 - 7) \div 3$ or -4.33 or $y = 3x + 9$	M1	Use a point on $y = 3x + 7$ compare gradient to 3 eg Gradient from (–5, –6)		
8(b)	Above and -8 or Above and -4.33 or Above and $y = 3x + 9$	A1	oe Above and eg Gradient fr (0, 7) is 2.6	om (–5, –6) to	
	Additional Guidance				
	Do not ignore incorrect statements eq	g –6 is les	s than –8 so above	M1A0	
	(0, 7), (-1, 4), (-2, 1), (-3, -2), (-4, -5), (-5, -8) and ticks below			M1A0	

	1.1 seen or 110% = 19.25 seen or 19.25 ÷ 110	M1	oe eg 10% = 1.75 1% = 0.175	
9	19.25 ÷ 1.1 or 0.175 × 100 or 17.5	M1dep	oe	
	17.50	A1	correct money notation	
	Ad	ditional C	Guidance	
	Condone £17.50p			M1M1A1
	Answer £17.5			M1M1A0

Question	Answer	Mark	Commer	nts
	55 and 91	B3	B2 for (7), 19, 31, 43, 55, or 55 identified with 0 or 1 answer or 91 identified with 0 or 1 answer or 55 and 91 identified wit answer B1 at least 2 correct two-of from the sequence seen	incorrect incorrect th 1 incorrect
	Additional Guidance			
10	The correct sequence is (7), 19, 31, 43, 55, 67, 79, 91 Ignore continuation of sequence beyond 91			
	Ignore further working unless contradictory			
	55 and 91 identified and 5 th and 8 th terms stated (ignore fw)			B3
	55 and 91 identified and answer 2 (or there are 2) (ignore fw)			B3
	55 identified and 5 th stated (ignore fw	B2		
	Condone 5 or 5 th as final answer provided there is a clear link to 55 eg $12 \times 5 = 60 - 5 = 55 55 \div 11 = 5 5$ on answer line			B2
	Condone 8 or 8 th as final answer provided there is a clear link to 91 eg $12 \times 8 = 96 - 5 = 91$ 8 on answer line			B2
	1 B1 for 1 correct value in			correct position

11(a)	Ade	ditional Guidance

Question	Answer	Mark	Commer	nts	
	$\begin{pmatrix} -2\\ 4 \end{pmatrix}$ seen	M1			
	Valid reason	A1	eg $\begin{pmatrix} -2\\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} -1\\ 2 \end{pmatrix}$ $\begin{pmatrix} -2\\ 4 \end{pmatrix} = 2\mathbf{b}$ $\begin{pmatrix} -2\\ 4 \end{pmatrix}$ is a multiple of $\begin{pmatrix} -1\\ 2 \end{pmatrix}$		
			a + 2 c is a multiple of b 2 b = a + 2 c	, 	
	Ad	ditional G	Guidance		
	Condone vectors written as coordina	tes, eg (–	1, 2) is half of (–2, 4)		
	Must see $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ or (-2, 4) to award the set of t	X			
11(b)	Condone missing brackets and / or divisor lines				
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and both gradient –2			M1A1	
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and double so parallel			M1A1	
	$\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ seen and half so parallel			M1A1	
	$\begin{pmatrix} -2\\ 4 \end{pmatrix}$ seen and a + 2 c is 2 b				
	$\begin{pmatrix} -2 \\ 4 \end{pmatrix} \text{ seen and } \mathbf{b} = \frac{1}{2}\mathbf{a} + 2\mathbf{c}$			M1A0	
	$\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ seen and both have same ratio)		M1A0	
	$\frac{-2}{4}$ and $\frac{-1}{2}$ both equal -0.5			M1A0	

Question	Answer	Mark	Commer	nts
12	12.5 or $12\frac{1}{2}$ or $\frac{25}{2}$	B1		
	N/m^2 or newtons per square metre or Nm^{-2} or pascals or Pa	B1	oe	
	Additional Guidance			
	m ² /N or P			B0
	The diagonals are lines of symmetry			
	The diagonals bisect each other \checkmark	B1		
13	The diagonals are perpendicular	51		
	The diagonals are equal in length			
	Ade	ditional G	auidance	

Question	Answer	Mark	Commer	nts
14	At least 4 of $(x = 0) \ y = 1$ $(x = 1) \ y = 0.8 \text{ or } \frac{4}{5}$ $(x = 2) \ y = 0.64 \text{ or } \frac{16}{25}$ $(x = 3) \ y = [0.51, 0.512] \text{ or } \frac{64}{125}$ $(x = 4) \ y = [0.40, 0.41] \text{ or } \frac{256}{625}$ $(x = 5) \ y = [0.32, 0.33] \text{ or } \frac{1024}{3125}$ $(x = 6) \ y = [0.26, 0.262144] \text{ or}$ $\frac{4096}{15\ 625}$	M1	oe May be seen in the table or a list or implied from their graph	
	6 or 7 correct points plotted	A1	tolerance of $\pm \frac{1}{2}$ small s	quare
	Fully correct smooth curve through all seven correct points	A1	tolerance of $\pm \frac{1}{2}$ small s	quare
	Additional Guidance			
	Ignore extra points plotted			
	Ignore any curve drawn for $x < 0$ or x	> 6		
	Curve passing through all correct points within tolerance			M1A1A1
	Ruled straight lines			A0

Question	Answer	Mark	Comments	
	4(x + 3)	B1		
15	15 Additional Guidance			

	$(-\frac{3}{4}, 3)$	B1			
16	Additional Guidance				

17	7 × 5 (× 9) or (100 – 30) ÷ 2 (× 9) or 35 (× 9)		First two digits of Methoo	IA
	or 99 ÷ 11 or 9	M1	Last two digits of Method	ΙA
	or 4 × 5 × 4 × 5		Complete for Method B	
	315 or 400	A1		
	315 and 400 with Method B identified	A1	Method B can be implied by choosing 400	
	Additional Guidance			
	315 and 400 and B with no working			M1A1A1
	315 and 400 with 400 circled			M1A1A1
	Beware $40 \times 10 = 400$ (for Method A) is incorrect working			

Question	Answer	Mark	Comments
	Alternative method 1		
	$\frac{2(x+4)}{6x} \text{ or } (-)\frac{15}{6x}$ or $\frac{2x+8}{6x}$ or $(-)\frac{15}{6x}$ or $\frac{2x(x+4)}{6x^2}$ or $(-)\frac{15x}{6x^2}$ or $\frac{2x^2+8x}{6x^2}$ or $(-)\frac{15x}{6x^2}$	M1	Oe A correct fraction using a common denominator for one of the given fractions Accept for this mark only eg $2(3x)$ for $6x$ 3(5) for 15 $(2x)(3x)$ for $6x^2$ First fraction can be written as separate
18	$\frac{2(x+4)}{6x} \text{ and } (-)\frac{15}{6x}$ or $\frac{2x+8}{6x}$ and $(-)\frac{15}{6x}$ or $\frac{2x(x+4)}{6x^2}$ and $(-)\frac{15x}{6x^2}$ or $\frac{2x^2+8x}{6x^2}$ and $(-)\frac{15x}{6x^2}$	A1	fractions eg $\frac{2x}{2(3x)} + \frac{8}{2(3x)}$ oe A correct fraction using a common denominator for both of the given fractions First fraction can be written as separate fractions eg $\frac{2x}{6x} + \frac{8}{6x}$
	$\frac{2x-7}{6x}$ or $\frac{2kx-7k}{6kx}$, where k is a constant value	A1	Accept eg $\frac{2x + -7}{6x}$ Do not ignore further working

	Alternative method 2			
18 cont	$\frac{2(x+4)}{6x} \text{ or } (-)\frac{15}{6x}$ or $\frac{2x+8}{6x}$ or $(-)\frac{15}{6x}$ or $\frac{2x(x+4)}{6x^2}$ or $(-)\frac{15x}{6x^2}$ or $\frac{2x^2+8x}{6x^2}$ or $(-)\frac{15x}{6x^2}$	M1	oe A correct fraction using a denominator for one of th Accept for this mark only eg 2(3x) for 6x 3(5) for 15 (2x)(3x) for $6x^2$ First fraction can be writt fractions eg $\frac{2x}{2(3x)} + \frac{8}{2(3x)}$	e given fractions en as separate
	$\frac{2x+8-15}{6x}$ or $\frac{2x-7}{6x}$ or $\frac{2kx-7k}{6kx}$, where k is a constant value	A1	Allow one error in numerator Accept eg $\frac{2x + -7}{6x}$ Must be $6x$ or a multiple of $6x$	
	$\frac{2x-7}{6x}$ or $\frac{2kx-7k}{6kx}$, where k is a constant value	A1	Accept eg $\frac{2x + -7}{6x}$ Do not ignore further wor	king
	Ad	auidance		
	Use the method that gives the greater mark			
	$\frac{2x^2-7x}{6x^2}$			M1A1
	$\frac{2x-7}{6x} = \frac{-5}{6x}$			M1A1A0
	$\frac{15x}{6x^2} - \frac{2x^2 + 8x}{6x^2}$ (order of fractions reversed)			M1A0A0

Question	Answer	Mark	Comments	
	(8, 0)	B1		
19	19 Additional Guidance			

	$x^{2} + (7x)^{2} = (10y)^{2}$ or $x^{2} + 49x^{2} = 100y^{2}$	M1	oe		
	$50x^2 = 100y^2$ or 1.41()	A1	oe equation with terms collected eg $\frac{x^2}{y^2} = \frac{100}{50}$ or $x^2 = 2y^2$ or $x = 1.41y$		
20	$\sqrt{2}$ or $\frac{2}{\sqrt{2}}$	A1	Do not accept further wo	working	
	Ado	ditional G	Guidance		
	$x^2 + 7x^2 = 10y^2$			M0	
	$\sqrt{2} = 1.41$			M1A1A0	
	$x^{2} + (7x)^{2} = (10y)^{2}$ $x^{2} + 14x^{2} = 20y^{2}$			M1	
	$x^2 + 14x^2 = 20y^2$			A0	

Question	Answer	Mark	Commen	its
	$m \alpha h^{3}$ or $m = k \times h^{3}$ or $1600 = k \times 8^{3}$ or $c \times m = h^{3}$ or $c \times 1600 = 8^{3}$	M1	oe eg <i>h</i> = k <i>m</i> ^{1/3}	
21(a)	(k =) $1600 \div 8^3$ or 3.125 or (c =) $8^3 \div 1600$ or 0.32	M1dep	oe eg $\frac{1600}{512}$ or $\frac{25}{8}$ $\frac{512}{1600}$ or $\frac{8}{25}$	
	$m = 3.125 \times h^{3}$ or $0.32 \times m = h^{3}$	A1	oe equation	
	Additional Guidance $m \alpha 3.125 \times h^3$ or $0.32m \alpha h^3$		iuidance	
				M1M1A0
	(k =) 3.125 or (c =) 0.32			M1M1
	$3.125h^3$ or $0.32h^3$			M1M1

Question	Answer	Mark	Comme	nts
	their 3.125×12^{3} their 3.125×1728 or $1600 \times \left(\frac{12}{8}\right)^{3}$ or $12^{3} \div$ their 0.32 or $1728 \div 0.32$ or $1600 \div \left(\frac{8}{12}\right)^{3}$	M1	oe	
	5400	A1ft	oe ft their 3.125 provided us 3.125 × h^3	sing m = their
	Ade	ditional G	auidance	
21(b)	Must use × 12^3 or × 1728 or × $\left(\frac{12}{8}\right)^3$	for M1		
	If in part (a) $m = k \times h$ $1600 = k \times 8$			M0 part (a)
	m = 200h and in part (b) $m = 200 \times 12, m = 2400$			M0 part (b)
	If in part (a) $m = k \times h$ $1600 = k \times 8$			M0 part (a)
	m = 200h and in part (b) $m = 200 \times 12^3, m = 345\ 600$			M1A1ft part (b)

Question	Answer	Mark	Comme	nts
	Alternate segment or Reason on first line of working is incorrect	B1	oe Any incorrect statement	B0
	Ade	ditional G	auidance	
	Incorrect theorem stated in first line			B1
	First line is incorrect. It should say alt segment			
	Angles not in same segment			
22	Angles in same segment are not equal			
	Opposite segments (are not equal)			
	First line is incorrect. It should say opposite segmentB0			
	The angle between the chord and the tangent is equal to the angle in B0 the opposite segment			
	Angle ACB is not in the same segment, it is alternateB0			B0
	Angles are not in the same segment, they are alternate B0			B0

23	$u_2 = 0.6 \text{ or } \frac{3}{5}$ $u_3 = 1.875 \text{ or } \frac{15}{8}$	B2	oe B1 for 1 correct or for u_2 incorrect but the correctly follows through truncated to 4 dp	-
	Ade	ditional G	auidance	
	$u_1 = 0.6, \ u_2 = 1.875, \ u_3 = 1.0434 \text{ or } u_3 = 1.0435$		B1	

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	$\frac{1}{2} \times 10 \times 20$ or 100	M1	oe Area of triangle on left		
	$\frac{1}{2} \times (20 + 30) \times 10 \text{ or } 250$ or $20 \times 10 \text{ or } 200$ and $\frac{1}{2} \times 10 \times 10 \text{ or } 50$	M1	oe Area of trapezium on righ	nt	
	350	A1			
	Alternative method 2				
24(a)	$\frac{1}{2} \times 10 \times 10$ or 50	M1	oe Area of triangle on top rig	yht	
	$\frac{1}{2} \times (20 + 10) \times 20 \text{ or } 300$ or 10 × 20 or 200 and $\frac{1}{2} \times 10 \times 20 \text{ or } 100$	M1	oe Area of trapezium across	bottom	
	350	A1			
	Additional Guidance				
	$\frac{1}{2} \times (0 + 2 \times 20 + 30) \times 10$ (using Trapezium rule)		le)	M1M1	
	Beware of 300 from incorrect wo	rking			
	Beware $(30 - 20) \times (20 - 10) = 100$ is incorrect working				

Question	Answer	Mark	Comments
24(b)	It works out an overestimate of the distance ✓ It works out an underestimate of the distance ✓ It could be an overestimate or an underestimate or an underestimate of the distance ✓ It could be an overestimate of the distance	B1	Guidance

05(-)	$\tan 6 = \frac{CD}{500}$ or 500 × tan 6	M1	oe any letter $\frac{CD}{\sin 6} = \frac{500}{\sin 84}$
25(a)	[52.5, 52.6] or 53	A1	May be on diagram
	Additional Guidance		
	Check diagram for angle		

Question	Answer	Mark	Comments
	Alternative method 1		
	500 ² + 400 ² or 250 000 + 160 000 or 410 000	M1	oe
	$\sqrt{\text{their } 410\ 000}$ or $\sqrt{500^2 + 400^2}$ or 640.(3)	M1dep	AC
	$\tan x = \frac{[52.5, 52.6] \text{ or } 53}{\text{their } 640.(3)}$	M1dep	oe any letter
	[4.6, 4.75] from correct working	A1	accept 5 with correct working seen
25(b)	Alternative method 2		
	⁵⁰⁰ / _{cos 6} or [502.7, 502.8]	M1	oe BD
	$\sqrt{\left(\frac{500}{\cos 6}\right)^2 + 400^2}$	M1dep	AD
	or [642.4, 642.5]		
	$\sin x = \frac{[52.5, 52.6] \text{ or } 53}{\text{their } [642.4, 642.5]}$	M1dep	oe any letter
	[4.6, 4.75] from correct working	A1	accept 5 with correct working seen

	Alternative method 3			
	$500^{2} + 400^{2} \text{ or } 250\ 000 + 160\ 000$ or 410\ 000 or $\frac{500}{\cos 6}$ or [502.7, 502.8]	M1	oe BD	
25(b) cont	$\sqrt{\text{their } 410\ 000} \text{ or } \sqrt{500^2 + 400^2}$ or 640.(3) or $\sqrt{\left(\frac{500}{\cos 6}\right)^2 + 400^2}$ or [642.4, 642.5]	M1dep	AC AD	
	$\cos x = \frac{\text{their 640.(3)}}{\text{their [642.4, 642.5]}}$	M1dep	oe any letter	
	[4.6, 4.75] from correct working	A1	accept 5 with correct wo	rking seen
4		ditional G	luidance	
	Check diagram for lengths			
	Beware sin $x = \frac{52.6}{640.(3)}$ leads to [4.6, 4.75]			M1M1M0A0

Question	Answer	Mark	Comments			
	Alternative method 1 – Counting squares					
	15 or 6.6 or 2.4 (cm squares)	M1	375 or 165 or 60 (small squares)			
	their 15 + their 6.6 + their 2.4 or 24		allow one error			
	(total cm squares)	M1dep	their 375 + their 165 + their 60 or 600			
			(total small squares)			
	$\frac{\text{their 15}}{\text{their 24}} \text{ or } \frac{\text{their 375}}{\text{their 600}} \text{ or } 0.625$		oe			
	or $\frac{480}{\text{their } 600}$ or 0.8	M1dep	their 600 480 or 1.25			
	(cars per small square)	windep	(small squares per car)			
	or $\frac{480}{\text{their } 24}$ or 20		$\frac{\text{their } 24}{480} \text{or } 0.05$			
	(cars per cm square)		(cm square per car)			
26(a)	300	A1				
20(a)	Alternative method 2 – Using f.d. scale of x per unit					
	5 <i>x</i> × 15 or 75 <i>x</i>		25 <i>x</i> × 15 or 375 <i>x</i>			
	or $6.6x \times 5$ or $33x$	M1	or 33 <i>x</i> × 5 or 165 <i>x</i>			
	or 0.8 <i>x</i> × 15 or 12 <i>x</i>		or $4x \times 15$ or $60x$			
	(x per cm)		(x per small square)			
	$5x \times 15 + 6.6x \times 5 + 0.8x \times 15$		allow one error			
	or $75x + 33x + 12x$		$25x \times 15 + 33x \times 5 + 4x \times 15$			
	or 120 <i>x</i>	M1dep	or $375x + 165x + 60x$			
	(x per cm)		or 600 <i>x</i>			
			(x per small square)			
	their $120x = 480$ or $x = 4$	M1dep	oe $\frac{480}{\text{their 120}}$ or 4			
	300	A1				

	Alternative method 3 – Using a num	nber scale	of f.d. axis	
	5 × 15 or 75 or 6.6 × 5 or 33 or 0.8 × 15 or 12	M1	25 × 15 or 375 or 33 × 5 or 165 or 4 × 15 or 60	
	5 × 15 + 6.6 × 5 + 0.8 × 15 or 75 + 33 + 12 or 120 (1 per cm)	M1dep	allow one error 25 × 15 + 33 × 5 + 4 × 15 or 375 + 165 + 60 or 600 (1 per small square)	5
26(a) cont	$\frac{\text{their 15}}{\text{their 24}} \text{ or } \frac{\text{their 375}}{\text{their 600}} \text{ or 0.625}$ or $\frac{480}{\text{their 600}} \text{ or 0.8}$ (cars per small square) or $\frac{480}{\text{their 24}} \text{ or 20}$ (cars per cm square)	M1dep	oe $\frac{\text{their 600}}{480} \text{ or 1.25}$ (small squares per car) $\frac{\text{their 24}}{480} \text{ or 0.05}$ (cm square per car)	
	300	A1		
	Additional Guidance			
	Check diagram for working			
	Alternative method 1 Total squares must be the sum of three numbers			
	Alternative method 2 Must be the sum of three expressions			
	The correct f.d. labels for the heights of the bars are 20, 26.4 and 3.2			
	A correct frequency density scale using 1 cm = 4 units eg 4 seen on vertical scale at 1 cm 20 seen on vertical scale at 5 cm			M1M1M1 M1M1M1

Question	Answer	Mark	Comments
26(b)	$\frac{2}{3} \times 2.4$ or 1.6 or $\frac{2}{3} \times 60$ or 40 or $\frac{2}{3} \times 48$ or 10 × 0.8 × 4	M1	Oe
	32	A1	
	A	dditional G	auidance

27	$\frac{10}{30} \text{ and } \frac{9}{31} \text{ seen}$ or $\frac{1}{3}$ and $\frac{9}{31}$ seen	M1	oe accept 0.33… and 0.29.		
	$\frac{10}{30} \times \frac{9}{31} \times \frac{8}{32}$ or $\frac{1}{3} \times \frac{9}{31} \times \frac{1}{4}$	M1dep	oe accept 0.33 and 0.29 and 0.25		
	$\frac{3}{124}$ or [0.0239, 0.0242]	A1	oe eg <u>720</u> 29 760		
	Additional Guidance				
	Fractions do not have to be in simplest form				
	$\frac{10}{30} \times \frac{9}{31} \times \frac{8}{32} \times \frac{7}{33}$			M1M0	
	$\frac{10}{30} + \frac{9}{31} + \frac{8}{32}$			M1M0	

Question	Answer	Mark	Comments		
28	$4^2 + y^2 = 80$ or $y = \sqrt{64}$	M1	oe May be implied from 8 on diagram		
	<i>y</i> = -8	A1	Accept (4, -8)		
	$\frac{\text{their}-8}{4}$ or -2	M1	oe gradient of radius <i>OP</i>		
	$-1 \div$ their -2 or $\frac{1}{2}$ or $-1 \div$ their gradient	M1	gradient of tangent at P		
	$y = \frac{1}{2}x - 10$ or $y + 8 = \frac{1}{2}(x - 4)$	A1	oe Ignore further working		
	Additional Guidance				
	$y + 8 = \frac{1}{2}(x - 4)$ followed by error expanding and/or collecting terms			M1A1M1M1A1	
	$y = \frac{1}{2}x - 10$ in working and $\frac{1}{2}x - 10$ only on answer			M1A1M1M1A1	
	$\frac{1}{2}x - 10$			M1A1M1M1A0	
	$(y = \sqrt{64})$			M1	
	<i>y</i> = 8			A0	
	Gradient $OP = 2$			M1	
	Perpendicular gradient = $-\frac{1}{2}$			M1 A0	