GCSE
 MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator
Mark scheme
June 2022
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comment
$\mathbf{1}$	$\frac{1}{80}$	B1	

\mathbf{Q}	Answer	Mark	Comment
$\mathbf{2}$	$\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)$	B 1	

\mathbf{Q}	Answer	Mark	Comment
$\mathbf{3}$	15	B1	

Q Answer	Mark	Comment	
$\mathbf{4}$	$-5<x \leqslant 1$	B1	

Q	Answer	Mark	Comments
5	Alternative method 1		
	$10 x-5$	M1	may be seen in a grid
	their $10 x-6 x=9+$ their 5 or $4 x=14$ or $14 \div 4 \text { or } 7 \div 2$	M1	oe eg their $-5-9=6 x$ - their $10 x$ or $4 x-14=0$ collecting two terms in x and two constant terms correctly
	$\frac{14}{4}$ or $3 \frac{2}{4}$ or $\frac{7}{2}$ or $3 \frac{1}{2}$ or 3.5	A1ft	oe ft M1M0 or M0M1 with exactly one error
	Alternative method 2		
	$\frac{6 x}{5}+\frac{9}{5}$	M1	oe two terms eg $1.2 x+1.8$
	$2 x-$ their $\frac{6 x}{5}=$ their $\frac{9}{5}+1$ or $\frac{4 x}{5}=\frac{14}{5}$	M1	oe eg $-1-$ their $\frac{9}{5}=$ their $\frac{6 x}{5}-2 x$ or $\frac{4 x}{5}-\frac{14}{5}=0$ collecting two terms in x and two constant terms correctly
	$\frac{14}{4}$ or $3 \frac{2}{4}$ or $\frac{7}{2}$ or $3 \frac{1}{2}$ or 3.5	A1ft	oe ft M1M0 or M0M1 with exactly one error

Additional Guidance is on the next page

$\begin{gathered} 5 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Ignore simplification or conversion if correct answer seen	
	Correct answer from trial and improvement	M1M1A1
	Correct equation with terms collected or division with no or incorrect answer	M1M1A0
	Embedded 3.5 with no or incorrect answer	M1M1A0
	$\begin{aligned} & 10 x-5=6 x+9 \\ & 10 x-6 x=9-5 \\ & x=1 \text { (exactly one error in line 2) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M0 } \\ & \text { A1ft } \end{aligned}$
	$\begin{aligned} & 7 x-5=6 x+9 \\ & 7 x-6 x=9+5 \\ & x=14 \quad(\text { exactly one error in line } 1) \end{aligned}$	M0 M1 A1ft
	$\begin{aligned} & 10 x-5=6 x+9 \\ & 10 x+6 x=9-5 \\ & x=\frac{4}{16} \quad \text { (two errors in line 2) } \end{aligned}$	M1 MO AOft
	$\begin{aligned} & 10 x-1=6 x+9 \\ & 10 x-6 x=9+1 \end{aligned}$ $x=3$ (exactly one error in line 1 but answer does not ft)	M0 M1 AOft
	$\begin{aligned} & 7 x-6=6 x+9 \\ & 7 x-6 x=9+6 \\ & x=15 \text { (two errors in line 1) } \end{aligned}$	M0 M1 AOft
	$\begin{aligned} & 10 x+4=6 x+9 \\ & 10 x-6 x=9+4 \\ & x=3.25 \text { (neither M mark scored) } \end{aligned}$	MO MO AOft
	$10 x-5=30 x+45$	M1M0AOft
	Any ft answer must be rounded or truncated to 1 dp or better	
	The last two marks can be implied without the collection of terms seen eg $10 x-1=6 x+9$ and $x=2.5$	M0M1A1ft
	Collecting terms before the bracket has been expanded	MOMOAOft

Q	Answer	Mark	Comments	
	125 and 17 or 5^{3} and 17 or 5 and 5 and 5 and 17	B2	together in any order eg 125×17 or 17×5^{3} or $5,5,5,17$ or $2125 \div 17=125$ or $2125 \div 125=17$ B1 at least three of $8,27,64,125,216$, 343, 512, 729, 1000, 1331, 1728, 2197 etc (allow $2^{3}, 3^{3}, 4^{3}$ etc) or all four of 11, 13, 17, 19 (ignore any numbers not between 10 and 20) or (cube number >1) \times (prime number between 10 and 20) or $2125 \div$ (cube number >1) or $2125 \div$ (prime number between 10 and 20)	
	Additional Guidance			
6	B1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			
	B2 responses may be seen on a factor tree			
	B1 for three cube numbers given in index form - evaluations can be ignored eg $4^{3} 5^{3} 6^{3}$ scores B1 with no evaluations or with incorrect evaluations			
	B1 for multiplications or divisions - evaluation can be ignored eg1 $2^{3} \times 13$ scores B1 with no evaluation or evaluated incorrectly eg2 $2125 \div 27$ scores B1 with no evaluation or evaluated incorrectly eg3 $2125 \div 11$ scores B1 with no evaluation or evaluated incorrectly			
	125 and 17 seen in multiple attempts is B2 if 2125 included eg $125 \times 17=2125$ or $2125 \div 17=125$ or $2125 \div 125=17$ seen amongst multiple attempts			B2
	125 and 17 seen in multiple attempts is B 1 if 2125 not included eg 125×17 seen amongst multiple attempts			B1
	$\begin{array}{llllllll}11 & 13 & 15 & 17 & 19\end{array}$			
	Incomplete list eg 11 1319 does not score B1			

Q	Answer	Mark	Comments
7	Alternative method 1 Words per minute or words per second		
	$416 \div 8$ or 52	M1	$\text { oe eg } 416 \div(8 \times 60) \text { or } 416 \div 480$ or $\frac{13}{15}$ or $[0.86,0.87]$ or 0.9
	$1534 \div \text { their } 52$ or $(1534-416) \div \text { their } 52+8$ or 29.5	M1dep	$\begin{aligned} & \text { oe eg } 1534 \div \text { their }[0.86,0.87] \\ & \text { or } \\ & (1534-416) \div \text { their }[0.86,0.87]+8 \times 60 \\ & \text { or } 1770 \end{aligned}$
	29 minutes 30 seconds	A1	SC2 29 minutes 50 seconds or 29 minutes 5 seconds
	Alternative method 2 Minutes per word or seconds per word		
	$\begin{aligned} & 8 \div 416 \text { or } \frac{1}{52} \\ & \text { or }[0.019,0.019231] \text { or } 0.02 \end{aligned}$	M1	oe eg $8 \times 60 \div 416$ or $480 \div 416$ or $\frac{15}{13}$ or $[1.15,1.154]$ or 1.2
	```1534\times their [0.019, 0.019231] or (1534-416)\times their [0.019, 0.019231] + 8 or 29.5```	M1dep	$\begin{aligned} & \text { oe eg } 1534 \times \text { their }[1.15,1.154] \\ & \text { or } \\ & (1534-416) \times \text { their }[1.15,1.154] \\ & +8 \times 60 \\ & \text { or } 1770 \end{aligned}$
	29 minutes 30 seconds	A1	SC2 29 minutes 50 seconds or 29 minutes 5 seconds

## Mark scheme and Additional Guidance continue on the next page

$\begin{gathered} 7 \\ \text { cont } \end{gathered}$	Alternative method 3 Essay words $\div$ report words			
	$1534 \div 416$ or $\frac{59}{16}$    or $[3.68,3.69]$ or 3.7    or M1   $(1534-416) \div 416$    or $[2.68,2.69]$ or 2.7		oe	
	$\begin{aligned} & 8 \times \text { their }[3.68,3.69] \\ & \text { or } \\ & 8 \times \text { their }[2.68,2.69]+8 \\ & \text { or } 29.5 \end{aligned}$	M1dep	oe eg $8 \times 60 \times$ their $[3.68,3.69]$ or$8 \times 60 \times \text { their }[2.68,2.69]+8 \times 60$$\text { or } 1770$	
	29 minutes 30 seconds	A1	SC2 29 minutes 50 seconds or 29 minutes 5 seconds	
	Additional Guidance			
	M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			
	Answer 29.5 minutes 1770 seconds			M1M1A0
	Build-up method must be a fully correct method that would lead to 29.5			
	If working with report words $\div$ essay words apply the principles of Alt 3			


Q	Answer	Mark	Comments
	Alternative method 1		
	$90 \times 5$ or 450   or $\frac{72+83+88+97+x}{5}$   or $\frac{340+x}{5}$	M1	oe   any letter or symbol
8	$90 \times 5-72-83-88-97$   or $90 \times 5-340$   or $72+83+88+97+x=90 \times 5$   or $340+x=90 \times 5$	M1dep	oe any letter or symbol equations must have fraction eliminated
	110	A1	
	Alternative method 2		
	Trial of any value with mean correctly evaluated	M1	also allow if given to the next or previous integer   eg1 trial of 100 $\frac{72+83+88+97+100}{5}=88$   eg2 trial of 78 $\frac{340+78}{5}=83(\text { or } 84 \text { or } 83.6)$   ignore trials with mean not evaluated or incorrectly evaluated
	Trial of 110 with mean evaluated to 90	M1dep	eg $\frac{72+83+88+97+110}{5}=90$   this mark implies M1M1
	110	A1	

Mark scheme and Additional Guidance continue on the next page



Q	Answer	Mark	Comments	
9(b)	$\frac{6}{120} \times 500$   or $[4.16,4.17] \times 6 \text { or }[24.96,25.02]$   or $4.2 \times 6$ or 25.2   or $25: 500 \text { or } \frac{25}{500}$	M1	oe eg $0.05 \times 500$ or $500 \div 20$	
	25	A1		
	Additional Guidance			
	Working and value may be seen by table			
	24 + 1, Answer 25			M1A1
	$480=24$, Answer 25			M1A1
	Embedded but not selected as answer eg 137.5 + $337.5+25=500$			M1A0
	Working for Not answered or Answered but sale not made is not choice eg ignore 137.5 and 337.5 seen			
	25 followed by answer 19			M1A0
	If rounded or truncated values are used, the final answer must be exactly 25   eg1 $500 \div 120=4.16,4.16 \times 6$   Answer 25 (may have kept full value on calculator)   eg2 $500 \div 120=4.16,4.16 \times 6=24.96$   Answer 25 (comes from further rounding)			M1   A1   M1   A0


Q	Answer	Mark	Comments	
10	$80 \times 0.9 \text { or } 72$   or $25 \times 1.2 \text { or } 30$   or $80 \times 0.1 \text { and } 25 \times 0.2$   or   8 and 5   or   -8 and 5	M1	oe eg $80 \times(1-0.1)$   or $25+25 \times 0.2$   or $25+5$   implied by 102 or 3 or -3	
	No and correct valid amount(s)	A1	eg no and 105 and 102 or no and 3   or no and -3   or no and 8 and 5   or no and -8 and 5	
	Additional Guidance			
	If neither box is ticked, No may be implied eg neither box is ticked and Ellie paid 3 less			M1A1
	Working and values may be seen by the table			
	No and 105 with M1 not seen			MOAO
	No and 8 with M1 not seen			MOAO
	No and 5 with M1 not seen			MOAO
	Condone No and 8 and 5 with arithmetic error(s) seen eg 72 so 8 less 30 so 5 more 105 and 103 No (arithmetic error in calculating Ellie's total)			M1A1
	Do not condone No and 8 and 5 with process error(s) seen eg $80-8=7225-5=20$ (process error, should be $25+5$ ) 105 and 92 No			M1A0


Q	Answer	Mark	Comments
11	Alternative method 1		
	$\begin{aligned} & 16^{2} \text { or } 256 \\ & \text { and } \\ & 30^{2} \text { or } 900 \end{aligned}$	M1	oe   implied by 1156
	$\sqrt{16^{2}+30^{2}}$ or $\sqrt{256+900}$ or $\sqrt{1156}$ or 34	M1dep	oe eg $\sqrt{16^{2}+30^{2}-2 \times 16 \times 30 \times \cos 90}$
	$52 \times$ their 34 or 1768	M1dep	oe   if M1M0 their 34 can be any value other than 16,30 or 52   dep on 1st M
	$0.5 \times 30 \times 16$ or 240	M1	oe eg $0.5 \times 30 \times 16 \times \sin 90$
	2008	A1	SC3 2248
	Alternative method 2		
	$\begin{aligned} & \tan ^{-1} \frac{16}{30} \text { or }[28,28.1] \\ & \text { or } \tan ^{-1} \frac{30}{16} \text { or }[61.9,62] \end{aligned}$	M1	oe   may be on diagram
	$\begin{aligned} & \frac{30}{\cos (\text { their }[28,28.1])} \\ & \text { or } \frac{16}{\cos (\text { their }[61.9,62])} \text { or } 34 \end{aligned}$	M1dep	$\begin{aligned} & \text { oe eg } \frac{16}{\sin (\text { their }[28,28.1])} \\ & \text { or } 30 \cos (\text { their }[28,28.1])+ \\ & 16 \cos (\text { their }[61.9,62]) \end{aligned}$
	$52 \times$ their 34 or 1768	M1dep	oe   if M1M0 their 34 can be any value other than 16,30 or 52   dep on 1st M
	$0.5 \times 30 \times 16$ or 240	M1	oe eg $0.5 \times 30 \times 16 \times \sin 90$
	2008	A1	SC3 2248

## Additional Guidance is on the next page

$\begin{gathered} 11 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Up to M4 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts	
	The 4th mark in Alts 1 and 2 is not dependent on any other marks	
	34 or 1768 or 240 may be on the diagram	
	SC3 is for using $30 \times 16$ for the area of the triangle	
	Ignore units	


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{1 2}$	$y$ is $125 \%$ of $x$	B1	


Q	Answer	Mark	Comments	
13(a)	$\frac{1}{3} \times \pi \times 24^{2} \times 117$   or $\frac{2}{3} \times \pi \times 24^{3}$	M1	$\begin{aligned} & \text { oe eg } \frac{1}{3} \pi \times 576 \times 117 \\ & \text { or } \frac{2}{3} \pi \times 13824 \end{aligned}$	
	```22464\pi or [70536,70582] or 9216\pi or [28938, 28957]```	A1	may be seen in a sum implied by final A1	
	$\begin{aligned} & \frac{1}{3} \times \pi \times 24^{2} \times 117+\frac{2}{3} \times \pi \times 24^{3} \\ & \text { or } 22464 \pi+9216 \pi \\ & \text { or } \\ & {[70536,70582]+[28938,28957]} \end{aligned}$	M1dep	oe	
	31680π or [99474, 99539]	A1		
	Additional Guidance			
	π may be seen as any value in the interval [3.14, 3.142]			
	Do not allow any misreads of formulae unless recovered eg $\pi \times 24^{2} \times 117$ and $\frac{2}{3} \times \pi \times 24^{2}$			M0
	Allow dots for multiplication			
	For A marks allow eg $22464 \times \pi$ or $\pi \times 31680$			
	31680π followed by incorrect evaluation attempt			M1A1M1A1
	31680π followed by further work			M1A1M1A0
	31680 only			MOAOMOAO
	$\begin{aligned} & \frac{1}{3} \times \pi \times 24^{2} \times 117=4725 \quad \frac{2}{3} \times \pi \times 24^{3}=28952 \\ & 4725+28952 \end{aligned}$ (even though 4725 is wrong the method for $\frac{1}{3} \times \pi \times 24^{2} \times 117$ is seen)			$\begin{gathered} \text { M1A1 } \\ \text { M1 } \end{gathered}$

Q	Answer	Mark	Comments
13(b)	Alternative method 1 Uses volume scale factor		
	$24 \div 2$ or 12	M1	oe eg $12 \times 2=24$
	(their 12) ${ }^{3}$	M1dep	oe eg $24^{3} \div 2^{3}$ or $13824 \div 8$
	1728	A1	condone 1:1728 or 1728:1 $\text { SC2 } \frac{1}{1728}$
	Alternative method 2 Compares volumes of cornets (ie compares total volumes)		
	$24 \div 2$ or 12	M1	oe eg $12 \times 2=24$ may be implied eg (height of cone) 9.75 or (volume of cone) 13π or (volume of cone) [40.8, 40.85] or (total volume) $\frac{55}{3} \pi$ or [57.4, 57.7]
	$\begin{aligned} & \text { their (a) } \div \\ & \left(\frac{1}{3} \pi \times 2^{2} \times \frac{117}{\text { their } 12}+\frac{2}{3} \pi \times 2^{3}\right) \end{aligned}$	M1dep	oe eg their (a) $\div[57.4,57.7]$
	1728	A1	condone 1:1728 or $1728: 1$ $\text { SC2 } \frac{1}{1728}$

Mark scheme and Additional Guidance continue on the next two pages

13(b) cont	Alternative method 3 Compares volumes of cones		
	$24 \div 2$ or 12	M1	oe eg $12 \times 2=24$ may be implied eg (height of cone) 9.75 or (volume of cone) 13π or (volume of cone) [40.8, 40.85] or (total volume) $\frac{55}{3} \pi$ or [57.4, 57.7]
	their volume of cone from (a) $\div\left(\frac{1}{3} \pi \times 2^{2} \times \frac{117}{\text { their } 12}\right)$	M1dep	oe eg their volume of cone from (a) $\div[40.8,40.85]$
	1728	A1	condone 1:1728 or 1728:1 $\text { SC2 } \frac{1}{1728}$
	Alternative method 4 Compares	volumes	hemispheres
	their volume of hemisphere from (a) $\div\left(\frac{2}{3} \pi \times 2^{3}\right)$	M2	oe eg their volume of hemisphere from (a) $\div[16.7,16.8]$
	1728	A1	condone 1:1728 or 1728:1 $\text { SC2 } \frac{1}{1728}$

Additional Guidance is on the next page

13(b) cont	Additional Guidance	
	π may be seen as any value in the interval [3.14, 3.142]	
	Answer $\times 1728$ or $1728 \times$	M1M1A1
	Answer 12	M1M0A0
	Answer 12^{3} with 1728 seen	M1M1A1
	Answer 12^{3} without 1728 seen	M1M1A0
	Alts 2, 3 and 4 Allow if an incorrect volume formula from (a) is used in (b) eg Alt 4 (a) $\frac{1}{2} \times \frac{2}{3} \times \pi \times 24^{3}=4608 \pi$ $\begin{aligned} & \text { (b) } \frac{1}{2} \times \frac{2}{3} \times \pi \times 2^{3}=\frac{8}{3} \pi \\ & 4608 \pi \div \frac{8}{3} \pi \\ & 1728 \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$
	Alts 2 and 3 Allow $\frac{55}{3}$ rounded to 1 dp or better eg allow 18.3	
	Alt 4 Allow $\frac{16}{3}$ rounded to 1 dp or better eg allow 5.3	
	Alts 2 and 3 2nd M1-allow consistent omission of π	
	Alt 4 M 2 - allow consistent omission of π	
	Alts 2, 3 and 4 Answer 1728 is M1M1A1 unless it comes from rounding or truncating eg1 Alt $299525.655 \div 57.595=1728$ eg2 Alt $299525.655 \div 57.595=1728.03$ Answer 1728	M1M1A1 M1M1A0

Q	Answer	Mark	Comments	
14(a)	Alternative method 1			
	$375+400+1475$ or 2250 or 13 seen or $\frac{59}{90}$ seen or $[0.65,0.66]$ seen	M1	oe for 375 allow 350 or 370 or 380 or 400 for 1475 allow 1450 or 1470 or 1480 or 1500 $\text { eg } 400+400+1500$ any estimated values must be seen eg only seeing 2300 is M0	
	$\begin{aligned} & \frac{1475}{375+400+1475} \times 29250 \\ & \text { or } 1475 \times 13 \\ & \text { or }[0.65,0.66] \times 29250 \\ & \text { or }[19012.5,19305] \end{aligned}$	M1dep	oe for 375 allow 350 or 370 or 380 or 400 for 1475 allow 1450 or 1470 or 1480 or 1500 for 29250 allow 29000 or 29200 or 29300 or 29500 or 30000	
	19175	A1		
	Alternative method 2			
	[234, 238]	M1	may be on the diagram	
	$\frac{\text { their }[234,238]}{360} \times 29250$ or their $[234,238] \times 81.25$	M1dep	oe for 29250 allow 29000 or 29200 or 29300 or 29500 or 30000	
	19175	A1		
	Additional Guidance			
	$375+400+1475=2250$ If they subsequently estimate 2250 no further marks can be scored			M1
	Answer 19175 is M1M1A1 unless it comes from rounding or truncating eg1 Alt $10.65555 \times 29250=19175$ eg2 Alt $10.65555 \times 29250=19174.8$ Answer 19175			M1M1A1 M1M1A0
	Alt 2 if their angle is outside the range [234, 238]			MOMOAO
Q	Answer	Mark	Comment	
14(b)	It is lower than the answer to part (a)	B1		

Q	Answer	Mark	Comments
16(b)	Alternative method 1		
	$3000 \div(9+4+7) \text { or } 3000 \div 20$ or 150	M1	oe implied by 1350 or 600 or 1050 or 358.5(0) or 283.5(0)
	$\begin{aligned} & 9 \times 2.39 \text { or } 21.51 \\ & \text { or } \\ & 4 \times 1.89 \text { or } 7.56 \\ & \text { or } \\ & 29.07 \end{aligned}$	M1	oe may be embedded or implied eg $9 \times 2.39 \times$ their 150 or $4 \times 1.89 \times$ their 150 their 150 can be any number $3226.5(0)$ or 1134 or $4360.5(0)$ score M1M1
	($6660-9 \times 2.39 \times$ their $150-$ $4 \times 1.89 \times$ their 150$) \div(7 \times$ their 150) or $(6660-3226.5(0)-1134) \div 1050$ or $(6660-4360.5(0)) \div 1050$ or $2299.5(0) \div 1050$	M1dep	oe eg (6660-9 $\times 2.39 \times$ their $150-$ $4 \times 1.89 \times$ their 150) \div (3000-9× their $150-4 \times$ their 150) or $\frac{219}{100}$ dep on M1M1 their 150 must be from 1st M1
	2.19	A1	

Mark scheme and Additional Guidance continue on the next page

16(b) cont	Alternative method 2			
	$3000 \div(9+4+7) \text { or } 3000 \div 20$ or 150	M1	oe implied by 1350 or 600 or 1050 or 358.5(0) or 283.5(0)	
	$9 \times 2.39 \text { or } 21.51$ or $4 \times 1.89 \text { or } 7.56$ or 29.07	M1	oe may be embedded or implied eg $9 \times 2.39 \times$ their 150 or $4 \times 1.89 \times$ their 150 their 150 can be any number 3226.5(0) or 1134 or 4360.5(0) score M1M1	
	$\left(\frac{6660}{\text { their } 150}-9 \times 2.39-4 \times 1.89\right) \div 7$ or $(44.4(0)-21.51-7.56) \div 7$ or $15.33 \div 7$	M1dep	oe eg (44.4(0) - 29.07) $\div 7$ or $\frac{219}{100}$ dep on M1M1 their 150 must be from 1st M1	
	2.19	A1		
	Additional Guidance			
	Up to M1M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			

Q	Answer	Mark	Comment
$\mathbf{1 7}$	cylinder	B1	

Q	Answer ${ }^{\text {a }}$ Mark	Comments	
18	$\frac{-7 \pm \sqrt{7^{2}-4 \times 1 \times-11}}{2 \times 1}$ or $-\frac{7}{2} \pm \sqrt{\left(\frac{7}{2}\right)^{2}+11}$	oe eg $\frac{-7 \pm \sqrt{49+44}}{2}$ or $\frac{-7 \pm \sqrt{93}}{2}$ or$-\frac{7}{2} \pm \sqrt{\frac{49}{4}+11} \text { or }-\frac{7}{2} \pm \sqrt{\frac{93}{4}}$	
	1.3(2...) and -8.3(2..) A1		
	Additional Guidance		
	$-3.5 \pm \sqrt{12.25+11}$ or $-3.5 \pm \sqrt{23.25}$		M1
	For M1 allow solutions given separately eg $\frac{-7+\sqrt{93}}{2}$ and $\frac{-7-\sqrt{93}}{2}$		M1
	Both solutions correct		M1A1
	One solution correct does not imply M1		
	Not using \pm is M0 unless recovered eg $1 \frac{-7+\sqrt{7^{2}-4 \times 1 \times-11}}{2 \times 1}$ followed by 1.32 eg2 $\frac{-7+\sqrt{7^{2}-4 \times 1 \times-11}}{2 \times 1}$ followed by 1.3 and -8.3		MOAO M1A1
	A short dividing line or a short square root symbol is M0 unless recovered eg by a correct solution		
	Condone if their square root symbol is above any part of -11		
	$\sqrt{ }\left(7^{2}-4 \times 1 \times-11\right)$ is correct for $\sqrt{7^{2}-4 \times 1 \times-11}$		
	Both decimal solutions seen in working but only one on answer line		M1A0

Q	Answer	Mark	Comments
20	Alternative method 1		
	$\begin{aligned} & 5.88 \div 1.68 \text { or } 3.5 \\ & \text { or } \\ & 1.68 \div 5.88 \text { or }[0.285,0.29] \\ & \text { or } \\ & 5.88 \div 5.60 \text { or } 1.05 \end{aligned}$	M1	oe eg $\frac{7}{2}$ or $\frac{2}{7}$ or $\frac{21}{20}$ or $5.6 \times 1.05=5.88$
	$5.6(0) \div(5.88 \div 1.68)$ or $5.6(0) \times(1.68 \div 5.88)$ or $1.68 \div(5.88 \div 5.60)$ or 1.6	M1dep	oe $\text { eg } 5.6(0) \div 3.5$ or $5.6(0) \times[0.285,0.29]$ or $1.68 \div 1.05$
	their $1.6 \div 1.68$ or [$0.952,0.9524$] or 1 - their $1.6 \div 1.68$ or 1 - [0.952, 0.9524] or [0.0476, 0.048]	M1dep	oe eg $\frac{20}{21}$ or $1-\frac{20}{21}$ or $\frac{1}{21}$ 5.6(0) $\div 5.88$ oe scores M3 $1-5.6(0) \div 5.88$ oe scores M3
	4.76	A1	
	Alternative method 2		
	$5.88 \div 5.6(0)$ or 1.05	M1	$\text { oe eg } \frac{21}{20}$
	$1 \div$ their 1.05	M1dep	$\text { oe eg } 1 \div \frac{21}{20}$
	$\begin{aligned} & {[0.952,0.9524]} \\ & \text { or } 1-[0.952,0.9524] \\ & \text { or }[0.0476,0.048] \end{aligned}$	M1dep	oe eg $\frac{20}{21}$ or $1-\frac{20}{21}$ or $\frac{1}{21}$ $5.6(0) \div 5.88$ oe scores M3 $1-5.6(0) \div 5.88$ oe scores M3
	4.76	A1	

Additional Guidance is on the next page

$\begin{gathered} 20 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Up to M3 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts	
	$\frac{0.28}{5.60}=0.05$ is M0 unless 1.05 subsequently used	
	$5.60 \div 1.68$ with no further correct working	M0
	Note that 1.6 seen may be from an incorrect method eg $1.68 \times 0.95=1.6$ does not score because 1.68×0.95 is an incorrect method and the actual value of 1.68×0.95 is 1.596	
	Any single calculation or set of calculations that lead to $\frac{20}{21}$ or $\frac{1}{21}$	M3
	Some common oes for $1-5.6(0) \div 5.88$ are $\frac{5.88-5.6(0)}{5.88} \text { or } \frac{0.28}{5.88} \text { and } \frac{1.68-1.6}{1.68} \text { or } \frac{0.08}{1.68}$	M3
	3rd M1 oes include $\begin{aligned} & {[0.952,0.9524] \times 100 \text { or }[95.2,95.24] \%} \\ & 100 \%-[0.952,0.9524] \times 100 \\ & {[0.0476,0.048] \times 100 \text { or }(4.76,4.8] \%} \end{aligned}$	
	Values that score marks may be seen in ratios eg $5.88: 1.68$ (does not score at this stage) 3.50 : 1	M1
	Allow working in pence eg $588 \div 1.68$ or 350	M1
	Allow working in grams eg $5.88 \div 1680$ or 0.0035	M1

\mathbf{Q}	Answer	Mark	Comment
$\mathbf{2 1}$	$x^{2}+y^{2}=6$	B1	

Q	Answer	Mark	Comment
$\mathbf{2 2}$	8^{-5}	B1	

Q	Answer	Mark	Comments
24	$\frac{15-8}{6-2} \text { or } \frac{7}{4}$	M1	oe eg $\frac{8-15}{2-6}$ or 1.75 may be embedded in an attempt at equation of line eg $y=\frac{7}{4} x \ldots$ may be implied
	$-1 \div \text { their } \frac{7}{4} \text { or }-\frac{4}{7}$ or $\frac{17-9}{x-0} \times \text { their } \frac{7}{4}=-1$	M1	oe allow [-0.57143, -0.57] may be embedded in an attempt at equation of a line eg $y=$ their $-\frac{4}{7} x \ldots$
	$17-9=$ their $-\frac{4}{7} x$ or $-4 x=56$ or $56 \div-4$	M1dep	oe equation must be of the form $a x=b$ (b can be unprocessed) dep on 2nd M1
	-14	A1	

Additional Guidance is on the next page

$\begin{gathered} 24 \\ \text { cont } \end{gathered}$	Additional Guidance	
	The second mark is not dependent on the first - see examples below	
	(gradient of line through given points $=$) $\frac{6-2}{15-8}=\frac{4}{7}$ (gradient of perpendicular line $=$) $-\frac{7}{4}$ $17-9=-\frac{7}{4} x$	M0 M1 M1
	(gradient of line through given points $=$) $-\frac{7}{4}$ $\begin{aligned} & \frac{17-9}{x} \times-\frac{7}{4}=-1 \\ & -56=-4 x \end{aligned}$	M0 M1 M1
	(gradient of line through given points $=$) $\frac{7}{4}$ (gradient of perpendicular line $=$) $\frac{4}{7}$	
	Condone use of letters for gradients eg $x=1.75$	M1
	For the first two marks, condone inclusion of x in their gradients	
	Answer -14 that comes from rounding or truncating cannot score A1 eg1 (perp grad $=$) $-0.57 \quad 8=-0.57 x \quad$ Answer -14 eg2 $($ perp grad $=)-0.57 \quad 8=-0.57 x=-14.03 \quad$ Answer -14	$\begin{aligned} & \text { M3A1 } \\ & \text { МЗА0 } \end{aligned}$

Q	Answer	Mark	Comments
28	interior angle $=150$ or exterior angle $=30$ or angle $B C N=120$	B1	method not required may be seen on diagram
	interior angle $=150$ with a valid method shown or exterior angle $=30$ with a valid method shown or angle $B C N=120$ with a valid method shown	B1dep	angles may be seen on diagram but methods will be in working lines eg $180-\frac{360}{12}=150$ or $\frac{1800}{12}=150$ or $360-120-90=150$ or $\frac{360}{12}=30$ or $\frac{180-120}{2}=30$ or $180-150=30$ or $360-150-90=120$ or $360-240=120$ or $180-2 \times 30=120$
	interior angle $=150$ with a valid method shown and exterior angle $=30$ with a valid method shown and angle $B C N=120$ with a valid method shown	B1dep	angles may be seen on diagram but methods will be in working lines eg $\frac{1800}{12}=150$ and $\frac{180-120}{2}=30$ and $360-240=120$ angles worked out in any order
	Fully correct working that must show correct progression and show all valid methods Valid methods shown must be appropriate for the approach used A reason must be included in the final step	B1dep	examples of the final step are (i) angle $A B C+$ angle $C B N=180$ (ii) interior angle $=150$ in two different ways (iii) exterior angle $=30$ in two different ways (iv) angle $B C N=120$ in two different ways (v) sum of three angles at $C=360$ (vi) sum of angles of triangle $B C N=180$

$\begin{gathered} 28 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Condone incorrect use of equals signs throughout eg interior angle $=12-2=10 \times 180=1800 \div 12=150$	B1B1
	interior angle may be seen as angle $A B C$ or angle $B C D$ exterior angle may be seen as angle $C B N$	
	It must be clear which angle they are working out eg1 Do not accept 150 if it is not correctly identified or not in the correct position on diagram eg2 Do accept 150 if it is identified as an interior angle or angle $A B C$ or is in the correct position on the diagram	
	Do not accept incorrect statements eg1 exterior angle $=150$ (even if 150 in correct position on the diagram) eg2 angle $A C B=150$ (even if 150 in correct position on the diagram)	
	Ignore reasons for the first three marks	
	Angles on the diagram with no valid methods can score a maximum of B1B0B0B0	
	For the 2nd and 3rd marks the methods shown do not have to show progression	
	Example of fully correct working for (i) interior angle $=\frac{1800}{12}=150$ angle $B C N=360-150-90=120$ angle $C B N=\frac{180-120}{2}=30$ $150+30=180$ angles on a (straight) line	$\begin{aligned} & \text { B1B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
	Example of fully correct working for (ii) exterior angle $=\frac{360}{12}=30$ angle $B C N=180-2 \times 30=120$ interior angle $=360-120-90=150$ interior angle $=\frac{1800}{12}=150$ (interior) angle of polygon	$\begin{aligned} & \text { B1B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$

Q	Answer			Mark	Comments	
	$(x-9)^{2} \ldots$			M1	$\text { allow }\left(x-\frac{18}{2}\right)^{2} \ldots$ may be implied by a grid for $(x-9)^{2}$	
	$\begin{aligned} & (x-9)^{2}-9^{2}+70 \\ & \text { or }(x-9)^{2}-81+70 \\ & \text { or }(x-9)^{2}-11 \end{aligned}$			M1dep	oe completing the square$\mathrm{eg}\left(x-\frac{18}{2}\right)^{2}-\left(\frac{18}{2}\right)^{2}+70$	
	$(9,-11)$ with correct completing the square seen			A1	eg $(9,-11)$ with $(x-9)^{2}-9^{2}+70$ seen SC1 $(9,-11)$ with correct completing the square not seen	
29	Additional Guidance					
	Allow $(x-9)^{2}$ to be $(9-x)^{2}$ throughout					
	Allow $(x-9)^{2}$ to be $(x-9)(x-9)$ throughout					
	Condone expression $=0$ throughout					
	$(x-9)^{2}=11$ with $(x-9)^{2}-11(=0)$ also seen scores M1M1 Also scores A1 if answer correct					
	$(x-9)^{2}=11$ without $(x-9)^{2}-11(=0)$ also seen Answer correct would still mean M1M0 (or SC1)					M1M0
	Allow as a slip if completing the square seen but the squared is omitted in a subsequent line eg $(x-9)^{2}-81+70=(x-9)-11$ Answer (9, -11)					$\begin{gathered} \text { M1M1 } \\ \text { A1 } \end{gathered}$
	($x-9$) - 11 and answer (9, -11)					SC1
	$(x-9)-11$ and answer not (9, -11)					MOMOAO
	($9,-11$) with no method or from a different method eg calculus					SC1
		x	Condone one of the products missing or incorrect			M1
	x	x^{2}				
	-9	$-9 x$				

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Copyright © 2022 AQA and its licensors. All rights reserved.

