AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname \qquad
Forename(s) \qquad
Candidate signature \qquad

GCSE

MATHEMATICS

Foundation Tier Paper 1 Non-Calculator

Tuesday 6 November 2018
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- mathematical instruments

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
22	
TOTAL	

- The maximum mark for this paper is 80 .
- You may ask for graph paper, tracing paper and more answer paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

Work out $\quad(-3)+(-8)$
Circle your answer.
-5
5
mean
median
mode
range
[1 mark]

Answer \qquad

6 The cost of 3 calendars is $£ 18$
Work out the cost of 5 calendars.
\qquad
\qquad

Answer £ \qquad

7 A helicopter blade does 3206 full turns in 7 minutes.
Work out the number of full turns per minute.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

8 At a cinema, films are shown on Screen 1 and Screen 2
Customers pay full price or child price.
There are three times as many customers in Screen 2 as Screen 1 68 customers paid child price.

Complete the frequency tree.

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | | 2 | |

\qquad
\qquad
\qquad
\qquad

Answer \qquad
$10 x$ is a positive integer.
$35 \div x$ is a positive integer.
Work out the four possible values of x.
\qquad
\qquad
\qquad

Answer \qquad
\qquad
\qquad
11 A fair dice has six sides, numbered 1 to 6
After it is rolled, five of the numbers can be seen

11 (a) Write down the probability that one of these five numbers is 2

Answer \qquad

11 (b) Work out the greatest possible sum of the five numbers.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question
$12 \quad$ Work out $\frac{2}{7}+\frac{6}{7}$

Circle your answer.

$$
\bar{t}
$$

r

13 Work out $4+3 \times 5-1$
Circle your answer.

28

14 The nth term of a sequence is $5 n-2$
Work out the 3rd term.
Circle your answer.

51
5
123

15 Trapezium $A B C E$ is made from parallelogram $A B C D$ and isosceles triangle $A D E$.
$A E=D E$

Not drawn accurately

Work out the size of angle AED.
\qquad
\qquad
\qquad
\qquad

Answer \qquad degrees

16
$a: b=1: 6$
$a: c=3: 1$
How many times bigger is b than c ?
\qquad
\qquad
\qquad

Answer \qquad

17 (a) Laura wants to work out 3\% of 1700
Her method is 1700×0.3
Is her method correct?
Tick a box.

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

17 (b) Laura also wants to work out $\frac{30}{29}$ of 60
Her answer is 58
Is her answer correct?
Tick a box.

Give a reason for your answer.
[1 mark]
\qquad
\qquad
\qquad

18 Here are five shapes, A to E.

A	Parallelogram
B	Regular pentagon
C	Rhombus
D	Scalene triangle
E	Trapezium

In the Venn diagram,
ξ is the set of all shapes
Q is the set of quadrilaterals
R is the set of shapes which always have rotational symmetry.
nmetry.

Complete the Venn diagram with the letters A to E .

$19 \quad a=7$ and $b=2$

Work out the value of $\quad \frac{a}{b}-a^{b}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

20
Solve $\quad 3 x-8=19$
\qquad
\qquad
\qquad
\qquad
$x=$ \qquad

21 Here are five number cards.

Two of the five cards are picked at random.
Work out the probability that the total of the two numbers is more than 30

Answer \qquad

22 (a) Complete the table of values for $y=x^{2}$

x	-2	-1	0	1	2
y					

22 (b) Draw the graph of $y=x^{2}$ for values of x from -2 to 2

22 (c) Use your graph to estimate the value of $\sqrt{2.6}$
\qquad

23 Two consecutive whole numbers are n and $n+1$

23 (a) Simplify $n-(n+1)$
\qquad
\qquad

Answer

23 (b) Multiply out $n(n+1)$

Answer \qquad

23 (c) The two numbers are added.
Show that the answer must be an odd number.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
$24 \quad$ Circle the value of $\cos 30^{\circ}$

$$
\begin{array}{ll}
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}
$$

0
1

25 Work out $8 \frac{1}{2} \div 2 \frac{2}{3}$
Give your answer as a mixed number.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

26 A ship is sailing in a straight line from its home port.
The distance-time graph shows 4 hours of the journey.

Work out the speed of the ship during these 4 hours.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad mph

27 Kim works at an airport in the UK.
She records the number of planes landing between 10 am and 2 pm each day.
The table shows the data for the first 10 days in January.

Day	1	2	3	4	5	6	7	8	9	10
Number of planes	148	151	147	155	153	147	155	102	151	154

27 (a) The airport was affected by fog on one of the days.
Which day do you think it was?
Give a reason for your answer.
[1 mark]
Day
Reason \qquad
\qquad

27 (b) Kim uses the data to predict how many planes will land at the airport in a year. In her method, she
uses an estimate of 150 planes in each 4-hour period throughout the day assumes the same number of planes each day.

Work out her prediction.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

27 (c) In fact,
fewer planes land in winter than in summer
fewer planes land at night than during the day.
What does this tell you about Kim's prediction?
Tick one box.

Give a reason for your answer.
\qquad
\qquad
\qquad

Turn over for the next question

28 The sum of the angles in any quadrilateral is 360°
For example, in a rectangle $4 \times 90^{\circ}=360^{\circ}$
Zak writes,
$5 \times 90^{\circ}=450^{\circ}$ so the sum of the angles in any pentagon must be 450° Is he correct?

Tick a box.

Show working to support your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
$29 \quad \sqrt{6^{2}+8^{2}}=\sqrt[3]{125 a^{3}}$
Work out the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Work out the percentage increase from 80 to 280
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad \%

Turn over for the next question

31 Solve $x^{2}-x-12=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

END OF QUESTIONS

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED
There are no questions printed on this page

Do not write outside the box
DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
Copyright © 2018 AQA and its licensors. All rights reserved.

