AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$	There are different types of electromagnetic waves.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$	What do all electromagnetic waves transfer?

Tick (\checkmark) one box.

Charge

Energy

Matter

Sound

0	1	2
Complete the sentence.		

Choose answers from the box.
charge frequency speed wavelength

Different types of electromagnetic waves have a different \qquad and a different \qquad .

0	1.	3	Figure 1 shows the electromagnetic spectrum.

Figure 1

Radio waves	Microwaves	Infrared	A	Ultraviolet	X-rays	B

Give the names of parts \mathbf{A} and \mathbf{B} of the electromagnetic spectrum.

A \qquad

B \qquad

| $\mathbf{0}$ | $\mathbf{1} .4$ | Different types of electromagnetic waves have different uses. |
| :--- | :--- | :--- | :--- |

Draw one line from each type of electromagnetic wave to its use.

Use

Electrical heaters
Ultraviolet
X-rays

Type of electromagnetic wave

Microwaves

Energy efficient lamps

Imaging bones
Imaging bones

Satellite communications
-
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ A student investigated how the colour of a surface affects the power of the infrared |
| :--- | :--- | :--- | radiation emitted by the surface.

Figure 2 shows the equipment used.
Figure 2

The infrared detector measures the power of the infrared radiation emitted by the flasks.

A student investigated how the power of the infrared radiation en changed with time. Table 1 shows the results.	
Time in seconds	Power in watts
0	8.0
60	7.2
120	6.5
180	5.9
240	5.4
300	5.0
360	4.7
420	4.5

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Describe the pattern shown by the data in Table $\mathbf{1}$. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .4$ What is the most likely value for the power of the infrared radiation emitted |
| :--- | :--- | :--- |

after 480 seconds?
Use Table 1.
Tick (\checkmark) one box.
4.0 W \square
\square
4.2 W \square
4.4 W \square
4.6 W \square

A student investigated how the power of the infrared radiation emitted from a flask

A Leslie Cube is used to demonstrate that different surfaces emit different amounts of infrared radiation.
Figure 3 shows an infrared detector and a Leslie Cube filled with hot water.
Figure 3

page 4.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{6}$ The teacher improved the demonstration by using four infrared detectors connected to |
| :--- | :--- | :--- | a data logger and computer. Each detector was pointed at a different surface of the Leslie Cube.

The distance between the surface and the detector was the same in each case.
Give two reasons why this improved the demonstration.
[2 marks]
1
\qquad
\qquad
2 \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} \quad$ Figure 4 shows an apple hanging from a tree..$~$ |
| :--- | :--- | :--- |

The \mathbf{X} marks the centre of mass of the apple.
Figure 4

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	Draw an arrow on Figure $\mathbf{4}$ to represent the weight of the apple.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ The apple has a mass of 0.150 kg |
| :--- | :--- | :--- | :--- |

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the apple.
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

\qquad
\qquad
\qquad
\qquad
Weight = \qquad N

| 0 | 3 | 3 |
| :--- | :--- | :--- | The apple in Figure $\mathbf{4}$ is stationary.

Why is the apple stationary?
Tick (\checkmark) one box.

The resultant force on the apple is downwards. \square

The resultant force on the apple is upwards. \square
The resultant force on the apple is zero.

Question 3 continues on the next page

When the apple is ripe it falls from the tree and accelerates towards the ground.

0	3	4	Why does the apple accelerate?

Tick (\checkmark) one box.

The resultant force on the apple is downwards.

The resultant force on the apple is upwards.

The resultant force on the apple is zero.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{5}$ |
| :--- | :--- | :--- | The acceleration of the apple is $9.8 \mathrm{~m} / \mathrm{s}^{2}$

The velocity of the apple changes from 0 to $4.9 \mathrm{~m} / \mathrm{s}$

Calculate the time taken for the apple to fall to the ground.
Use the equation:

$$
\text { time taken }=\frac{\text { change in velocity }}{\text { acceleration }}
$$

\qquad
\qquad
\qquad
\qquad
Time taken $=$ \qquad

| 0 | 4 |
| :--- | :--- |\quad Figure 5 shows a compass.

Figure 5

| 0 | $\mathbf{4}$ | $\mathbf{1}$ Why does the compass always point in the same direction when it is not near |
| :--- | :--- | :--- | a magnet?

Tick (\checkmark) one box.

The compass is not magnetic.

The Earth has a magnetic field. \square
There is no force acting on the compass. \square

0	$\mathbf{4} .2$	Z What material could the needle of the compass be made from?

Tick (\checkmark) one box.

Aluminium \square
Copper

Plastic

Steel

Figure 6 shows a coil of wire.
There is a current in the coil.
The circles show the position of four compasses.
Figure 6

0	$\mathbf{4}$.	3

Tick (\checkmark) one box.

The field has the same strength at all points. \square
The field is stronger further away from the coil. \square
The field is strongest at the ends of the coil. \square

| 0 | 4 | 4 | Draw one arrow in each circle on Figure 6 to show the direction of the magnetic field |
| :--- | :--- | :--- | :--- | at that point.

0	$\mathbf{4}$.	5

Do not write outside the box

1
\qquad

2 \qquad

Turn over for the next question

| 0 | 5 |
| :--- | :--- |\quad The stopping distance of a car is the sum of the thinking distance and the braking distance.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$

Tick (\downarrow) two boxes.

Condition of the tyres

Driving on wet roads

Mass of the car

Tiredness of the driver

Using a mobile phone

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Highway Code gives information on how thinking distance depends on the speed of a car.

Figure 7 shows the information as a graph.
Figure 7

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{3}$ What is the speed of a car if the thinking distance is 16 m ? |
| :--- | :--- | :--- | :--- |

Speed of car $=$ \qquad m / s

0	5	4
4	Describe the relationship between speed and thinking distance.	

\qquad
\qquad
\qquad
\qquad

0	5	5
5		

Draw a line on Figure 7 to show the relationship for a driver with a reaction time of 1.4 seconds.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{6}$	A car accelerates at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 45 m

initial velocity of the car $=0 \mathrm{~m} / \mathrm{s}$

Calculate the final velocity of the car.
Use the Physics Equations Sheet.
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Final velocity (2 significant figures) $=$ \qquad m / s
Turn over for the next question

0	6	1

Choose answers from the box.
amplitude frequency rarefaction reflection wavelength

A

B \qquad

| $\mathbf{0}$ | $\mathbf{6} .2$ | The wave shown in Figure $\mathbf{8}$ has a frequency of $4.0 \mathrm{kHz}, ~$ |
| :--- | :--- | :--- | :--- |

Calculate the period of the wave.
Use the Physics Equations Sheet.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Period = \qquad Unit \qquad

Question 6 continues on the next page

Sound waves are longitudinal.
Figure 9 shows how the speed of sound varies with the temperature of the air.
Figure 9

Use the Physics Equations Sheet to answer questions $\mathbf{0 6 . 3}$ and 06.4.

\qquad

0	6	4
A sound wave with a frequency of 300 Hz travels through the air.		

The air has a temperature of $28.0^{\circ} \mathrm{C}$

Determine the wavelength of the sound wave.
Use Figure 9.
\qquad
\qquad
\qquad
\qquad
\qquad
Wavelength = \qquad m

0	7

Figure 10 shows competitors in the wheelchair race at the London Marathon.
The distance of the London Marathon is 42000 m
Figure 10

Use the Physics Equations Sheet to answer questions 07.1 and $\mathbf{0 7 . 2}$.

\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ During the race competitors work against air resistance. |
| :--- | :--- | :--- | :--- |

The work done against air resistance by the winner of the race was 3360000 J

Calculate the average air resistance acting on the winner of the race.
\qquad
\qquad
\qquad
\qquad
Average air resistance $=$

Question 7 continues on the next page

Use the Physics Equations Sheet to answer questions $\mathbf{0 7 . 3}$ and $\mathbf{0 7 . 4}$.

0	7	3

Tick (\checkmark) one box.
distance travelled $=$ speed \times time

time $=$ distance travelled \times speed

speed $=$ distance travelled \times time

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{4}$ The distance of the London Marathon is $\mathbf{4 2 0 0 0 ~ m}$ |
| :--- | :--- | :--- | :--- |

The winning time for the race was 5600 seconds.
Calculate the average speed of the winner of the race.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Average speed = \qquad m / s

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{5}$	Explain why the speed of a competitor changes during the race.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright © 2022 AQA and its licensors. All rights reserved

