AQAE

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

Foundation Tier
 Physics Paper 1F

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| 0 | 1 | A student investigated how the potential difference across a filament lamp affects the |
| :--- | :--- | :--- | current in the lamp.

Figure 1 shows the circuit the student used.
Figure 1

0	1	1
1	Figure 2 shows a circuit symbol.	

Figure 2

What component does the symbol represent?
Tick (\checkmark) one box.

Ammeter

Battery

Lamp

Variable resistor \square

| $\mathbf{0}$ | $\mathbf{1} .2$ | $\mathbf{2}$ Which component from Figure $\mathbf{1}$ did the student use to adjust the potential difference |
| :--- | :--- | :--- | across the lamp?

| 0 | 1 | .3 | When the voltmeter was not connected to the circuit it gave a reading of 0.4 volts. |
| :--- | :--- | :--- | :--- | How can the student correct all the readings taken from the voltmeter?

Tick (\checkmark) one box.

Add 0.4 volts to each reading

Divide each reading by 0.4 volts

Multiply each reading by 0.4 volts

Subtract 0.4 volts from each reading

Question 1 continues on the next page

$\mathbf{0}$	$\mathbf{1}$.4
$\mathbf{4}$	The student recorded three values of current for each potential difference.	

Table 1 shows the results for 2.5 volts.
Table 1

Potential difference in volts	Current in amps		
	1	2	3
2.5	0.54	0.58	0.53

Calculate the mean current in the lamp.
Calculate mean current in the lamp.
\qquad
\qquad
\qquad
\qquad
Mean current $=$ \qquad A

$\mathbf{0}$	$\mathbf{1}$.5
$\mathbf{5}$	Calculate the power of the lamp when the potential difference across the lamp	

The current in the lamp was 0.75 A
Use the equation:

$$
\text { power }=\text { potential difference } \times \text { current }
$$

\qquad
\qquad
\qquad
\qquad
Power = \qquad W

| $\mathbf{0}$ | $\mathbf{1}$ | .6 |
| :--- | :--- | :--- | was 4.8 V

The current in the lamp was 0.75 A
Use the equation:

$$
\text { resistance }=\frac{\text { potential difference }}{\text { current }}
$$

\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

$\mathbf{0}$	1	$\mathbf{7}$	Complete the sentence.

Choose answers from the box.
Each answer may be used once, more than once or not at all.
[2 marks]

decrease	increase	stay the same

Increasing the current in a filament lamp makes the temperature
of the lamp \qquad and the
resistance of the lamp \qquad .

Question 1 continues on the next page

$\mathbf{0}$	$\mathbf{1}$.	8
Which graph shows the relationship between potential difference and current for a		

Tick (\checkmark) one box.

\square

\square

\square
Turn over for the next question Turn over

$\mathbf{0}$	$\mathbf{2}$	Figure 3 shows a lift near the bottom of a building.

The lift is attached by a cable to a counterweight.
An electric motor moves the lift.
The lift is moving up.
Figure 3

| $\mathbf{0}$ | $\mathbf{2} .1$ | As the lift moves up, how far does the counterweight move down? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

A shorter distance than the lift. \square
The same distance as the lift. \square
A longer distance than the lift. \square

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ What happens to the gravitational potential energy of the counterweight as it |
| :--- | :--- | :--- | moves down?

Tick (\checkmark) one box.

It decreases

It stays the same

It increases

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Calculate the change in gravitational potential energy of the lift when it |
| :--- | :--- | :--- | :--- | moves up 4.0 m

The mass of the lift is 1300 kg
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Use the equation:
gravitational potential energy $=$ mass \times gravitational field strength \times height [2 marks]
\qquad
\qquad
\qquad
\qquad
Change in gravitational potential energy = \qquad J

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2}$.4

Choose answers from the box.

chemical	elastic potential	gravitational potential
internal		kinetic

Friction between the brakes and the cable causes the speed of the lift to decrease.

As the speed decreases, there is a decrease in the \qquad energy of the lift.

As the speed decreases, there is an increase in the \qquad energy of the brakes.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{5}$	The motor transfers different amounts of energy each time people use the lift.

Which factors affect the amount of energy transferred by the motor as the lift moves?
[2 marks]
Tick (\checkmark) two boxes.

The distance moved by the lift

The height of the building

The length of the steel cable

The maximum power of the motor

The weight of the people in the lift

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{6}$	The weight of the lift and the counterweight stretch the cable by 0.015 m

The cable acts like a spring with a spring constant of $880000 \mathrm{~N} / \mathrm{m}$
Calculate the elastic potential energy of the stretched cable.
Use the equation:
elastic potential energy $=0.5 \times$ spring constant $\times(\text { extension })^{2}$
[2 marks]
\qquad
\qquad
\qquad
\qquad
Elastic potential energy = \qquad J

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{7}$ | A lift system using a counterweight is more efficient than a lift system that does not |
| :--- | :--- | :--- | :--- | use a counterweight.

How does having a more efficient system affect the energy transferred by the motor?
Tick (\checkmark) one box.

Less energy is transferred.

The same amount of energy is transferred.

More energy is transferred.

Turn over for the next question

| 0 | 3 | A teacher demonstrated that the radioactive isotope americium-241 emits |
| :--- | :--- | :--- | alpha particles.

Figure 4 shows the equipment used.
Figure 4

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{1}$ An americium-241 nucleus (Am) emits an alpha particle and turns into a neptunium |
| :--- | :--- | :--- | :--- | nucleus (Np).

Which is the correct nuclear equation for this decay?
Tick (\checkmark) one box.
${ }_{95}^{241} \mathrm{Am} \longrightarrow{ }_{93}^{237} \mathrm{~Np}+{ }_{2}^{4} \mathrm{He} \quad \square$

| 0 | 3 | 2 |
| :--- | :--- | :--- |${ }^{2}$ What is the furthest distance that alpha radiation can travel in air?

Tick (\checkmark) one box.

A few millimetres

A few centimetres

A few metres

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ The teacher placed a piece of paper between the americium- 241 and the |
| :--- | :--- | :--- | :--- | radiation detector.

The reading on the count rate meter decreased by a large amount.
Why does the decreased reading show that americium-241 emits alpha radiation?
Tick (\checkmark) one box.

Paper stops alpha radiation.

Paper stops all types of radiation.

Paper stops beta and gamma radiation.

The teacher replaced the americium- 241 with a source of beta radiation.

0	3	4	Which symbol represents a beta particle?

Tick (\checkmark) one box.

Calculate the smallest count rate this could have been.
\qquad
\qquad
Smallest count rate $=$ \qquad counts per second

A teacher investigated how the distance between a different radioactive source and the detector affects the count rate.

| 0 | $\mathbf{3}$ | $\mathbf{6}$ Draw one line from each type of variable to the description. |
| :--- | :--- | :--- | :--- |

Type of variable

Description
\square
Control variable

Distance between the source and detector

Dependent variable

Radioactive source

Independent variable

Time

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{7}$ | Figure 5 shows how the count rate from the different radioactive source changed with |
| :--- | :--- | :--- | :--- | the distance from the source.

Figure 5

Describe the relationship between the distance from the source and the count rate.
[2 marks]
\qquad
\qquad
\qquad

Turn over for the next question

Do not write

0	4	Figure 6 shows a swimmer wearing a wetsuit.

The wetsuit helps to keep the swimmer warm.
Figure 6

A student wrapped a thermometer in a piece of wetsuit material and placed the thermometer in water containing ice.

Figure 7 shows the apparatus.
Figure 7

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{1}$ | After 30 seconds in the water the temperature of the thermometer had |
| :--- | :--- | :--- | :--- | decreased by $7.5^{\circ} \mathrm{C}$

Calculate the average decrease in temperature each second.
\qquad
\qquad

Average decrease in temperature each second $=$ ${ }^{\circ} \mathrm{C}$

Question 4 continues on the next page

The student recorded the temperature of the thermometer after 30 seconds for four materials. Each piece of material was the same size and thickness.

In each test the starting temperature of the thermometer was $21.0^{\circ} \mathrm{C}$
Table 2 shows the results.
Table 2

Material	W	X	Y	Z
Temperature in ${ }^{\circ} \mathrm{C}$	13.5	8.0	16.0	12.0

0	4	2	Complete Figure 8 using the data in Table 2.

You should:

- label the y-axis
- draw the bars for materials Y and Z .

Figure 8

0	$\mathbf{4}$.	$\mathbf{3}$ Which material is the best thermal insulator?

Give a reason for your answer.
[2 marks]
Tick (\checkmark) one box.
W

X

Y

Z

Reason \qquad
\qquad
 The piece of new material was the same size and thickness as the piece of material Z. What was the temperature of the thermometer after 30 seconds?

Tick (\checkmark) one box.

Less than $12.0^{\circ} \mathrm{C}$

Exactly $12.0^{\circ} \mathrm{C}$ \square

Greater than $12.0^{\circ} \mathrm{C}$

Question 4 continues on the next page

| $\mathbf{0}$ | $\mathbf{4} .5$ | $\mathbf{5}$ During the investigation 0.0150 kg of the ice melted. The temperature of the water |
| :--- | :--- | :--- | :--- | and ice did not change.

specific latent heat of fusion of ice $=334000 \mathrm{~J} / \mathrm{kg}$
Calculate the energy needed to melt the ice.
Use the equation:
energy to melt the ice $=$ mass \times specific latent heat
[2 marks]
\qquad
\qquad
\qquad
\qquad
Energy needed to melt the ice =

The student wanted to determine the density of a wetsuit material.
The student measured the length of one side of a cube of wetsuit material with:

- a micrometer
- a ruler.

Table 3 shows the results.

Table 3

Equipment	Length in cm		
	Measurement $\mathbf{1}$	Measurement $\mathbf{2}$	Measurement $\mathbf{3}$
	0.581	0.557	0.576
Ruler	0.6	0.6	0.6

0	$\mathbf{4}$.6	Complete the sentence.

Choose the answer from the box.
[1 mark]

calibration	precision	reproducibility	resolution

The results show that compared to the ruler the micrometer has a higher
\qquad .

Use the Physics Equations Sheet to answer questions 04.7 and 04.8.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | 8 | The student calculated the volume of the cube of wetsuit material to be $0.186 \mathrm{~cm}^{3}$ |
| :--- | :--- | :--- | :--- | The density of the cube was $0.300 \mathrm{~g} / \mathrm{cm}^{3}$

Calculate the mass of the cube.
Give your answer in grams.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad .

Give yourans.
[3 g

| 0 | 5 | Figure 9 shows some of the energy resources used to meet the demand for electrical |
| :--- | :--- | :--- | power in the UK on one day in 2020.

Figure 9

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$
$\mathbf{1}$	The maximum demand for electrical power on that day was at 6 pm.	

Determine the percentage of the maximum demand for electrical power that was generated using gas.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage $=$ \qquad \%

$\mathbf{0}$	$\mathbf{5} .2$	$\mathbf{2}$ The UK government wants to reduce carbon emissions as much as possible. l

Which energy resources need to be used less to achieve this?
Tick (\checkmark) one box.

Coal and gas

Gas and nuclear

Wind and coal

Wind and nuclear

Question 5 continues on the next page

A network of transformers and transmission cables transfers electrical power from power stations to consumers.

| 0 | 5 | 3 |
| :--- | :--- | :--- | What is this network called?

\qquad
\qquad

0	5	4

\qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question

| 0 | 6 | A student made measurements to determine the specific heat capacity of |
| :--- | :--- | :--- | vegetable oil.

Figure 10 shows the equipment used.
Figure 10

0	6	1
1	Describe how the student could use the equipment shown in Figure 10 to determine	

\qquad

0	6	$\mathbf{2}$

\qquad
\qquad

A different student did not have a joulemeter and calculated the energy transferred by the electric heater.

Use the Physics Equations Sheet to answer questions 06.3 and 06.4.

\qquad

0	6	4

Calculate the time taken for the electric element to transfer 4750 joules of energy to the vegetable oil.
\qquad
\qquad
\qquad
\qquad
\qquad
Time taken $=$ \qquad s

In a deep fryer, vegetable oil is heated by an electric heating element. Food is then

Figure 11

$\mathbf{0}$	$\mathbf{6} .5$	$\mathbf{5}$ What electrical component is used to monitor the temperature of the vegetable oil?

\qquad

| 0 | 6 | 6 |
| :--- | :--- | :--- | The electric heating element in the deep fryer automatically switches off when the vegetable oil reaches a certain temperature.

Figure 12 shows how the temperature of the vegetable oil changed after the deep fryer was switched on.

Figure 12

Determine the resistance of the electrical component when the electric heating element automatically switched off.

Use Figure 11 and Figure 12.
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

0	6	.7

In the deep fryer, water in the chips underwent a physical change and became steam.
Why is this a physical change?
Tick (\checkmark) one box.

All water can change to steam.

No chemicals are involved when water changes to steam.

The change from water to steam can be detected visually.

The water will recover its original properties if the steam is cooled.

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2022 AQA and its licensors. All rights reserved.

