$A Q A B$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: TRILOGY

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$	This question is about Group 1 elements.

0	1	1	What are the Group 1 elements known as?

Tick (\checkmark) one box.

Alkali metals

Halogens

Noble gases

| 0 | 1 | . 2 Figure 1 shows a lithium atom. |
| :--- | :--- | :--- | :--- |

Figure 1

What is the number of electrons and neutrons in the atom of lithium?

Number of electrons \qquad
Number of neutrons \qquad

| 0 | 1. | 3 |
| :--- | :--- | :--- | What is the relative charge on a lithium ion?

Tick (\checkmark) one box.
$+1$

0
 -1

	Lithium is heated and then cooled in an experiment.
	Lithium solid $\xrightarrow{\text { Stage 1 }}$ Lithium liquid $\xrightarrow{\text { Stage } 2}$ Lithium solid

Two physical changes happen in the experiment.
Draw one line from each stage to the physical change that happens in that stage.

Stage

Physical change
\square

Stage 1

Stage 1

Dissolving

Stage 2

Freezing

Melting

Question 1 continues on the next page

Figure 2 represents the melting points of some Group 1 elements.
Figure 2

0	1	$\mathbf{5}$	What is the melting point of caesium?

Use Figure 2.

Melting point $=$ \qquad ${ }^{\circ} \mathrm{C}$

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{6}$ The melting point of potassium is $63^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |

Draw a bar for the melting point of potassium on Figure 2.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{7}$ Describe the trend of the melting points of the Group 1 elements in Figure 2.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.8	The boiling point of sodium is $883^{\circ} \mathrm{C}$

What is the state of sodium at $150^{\circ} \mathrm{C}$?
Use Figure 2.
Tick (\checkmark) one box.

Gas

Liquid

Solid

| 0 | 1 | $\mathbf{9}$ | Figure 3 represents the electronic structure of a sodium atom and of a |
| :--- | :--- | :--- | :--- | potassium atom.

Figure 3

Sodium atom

Potassium atom

Complete the sentence.
Choose the answer from the box.

gains an electron	loses an electron	shares an electron

Potassium is more reactive than sodium because potassium more easily \qquad .

| $\mathbf{0}$ | $\mathbf{2}$ This question is about hydrogen chloride and sodium hydroxide. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$
A chlorine atom has 7 electrons in the outer shell.		

A hydrogen atom has 1 electron in the outer shell.
Figure 4 represents part of a dot and cross diagram for a molecule of hydrogen chloride.

Complete the dot and cross diagram.
Use dots (0) and crosses (x) to represent electrons.
You should show only the electrons in the outer shells.

Figure 4

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2} y d r o g e n ~ c h l o r i d e ~ d i s s o l v e s ~ i n ~ w a t e r ~ t o ~ p r o d u c e ~ h y d r o c h l o r i c ~ a c i d . ~$

Hydrochloric acid reacts with sodium hydroxide solution.
Complete the word equation for the reaction between hydrochloric acid and sodium hydroxide.
hydrochloric acid + sodium hydroxide \rightarrow \qquad + water

Question 2 continues on the next page

Solutions of hydrochloric acid and sodium hydroxide are reacted and the temperature change is recorded.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ In the reaction, 3.65 g of hydrogen chloride reacts with 4.00 g of sodium hydroxide. $. ~ . ~$ |
| :--- | :--- | :--- | :--- |

1.80 g of water is produced.

Calculate the mass of the other product.
\qquad
Mass = \qquad g

$\mathbf{0}$	$\mathbf{2}$. $\mathbf{4} \quad$ Figure 5 shows part of the thermometer used to measure the temperature.

Figure 5

What is the temperature reading on the thermometer?

Temperature $=$ \qquad ${ }^{\circ} \mathrm{C}$

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{5}$	In the reaction, the temperature increases.

What type of reaction is happening when the temperature increases?
\qquad

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{6}$	Sodium hydroxide is an alkali.

Which two ions are in sodium hydroxide solution?

Tick (\checkmark) two boxes.
 $-$

| $\mathbf{0}$ | $\mathbf{3} \quad$ This question is about structure and bonding. |
| :--- | :--- | :--- |

Figure 6 represents part of the structure of silicon dioxide.
Figure 6

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ What type of structure is silicon dioxide?

Tick (\checkmark) one box.

Giant covalent \square
Ionic lattice

Simple molecular

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{2}$	Each oxygen atom forms two bonds.

What is the number of bonds formed by each silicon atom?
Use Figure 6.
\qquad

Figure 7 represents part of a fullerene.

Figure 7

0	3	3	Complete the sentence.

Choose the answer from the box.

hexagons	octagons	squares	triangles

The structure of fullerenes is based on \qquad .

0	3	4
$\mathbf{4}$	Complete the sentence.	

Choose the answer from the box.

carbon	hydrogen	oxygen

The fullerene molecule shown in Figure 7 is made from atoms of \qquad .

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{5}$ What is the fullerene molecule shown in Figure $\mathbf{7}$ used for?

Tick (\checkmark) one box.

Electronics

Hand warmers

Sports injury packs

Question 3 continues on the next page

Figure 8 represents part of the structure of a polymer.
Figure 8

| 0 | 3 | 6 |
| :--- | :--- | :--- | What holds the atoms together in a polymer chain?

Tick (\checkmark) one box.

Covalent bonds \square

Ionic bonds

Metallic bonds

0	3	7	Complete the sentence.

Choose the answer from the box.

atomic	intermolecular	macromolecular

In Figure 8 the polymer chains are held together by
\qquad forces.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{8}$ Calculate the percentage of copper atoms in the alloy. |
| :--- | :--- | :--- | :--- |

Number of magnesium atoms in the alloy $=$ \qquad

Number of copper atoms in the alloy = \qquad

Total number of atoms in the alloy = \qquad
\qquad

Percentage of copper atoms in the alloy $=$ \qquad \%

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{9}$ Explain why the magnesium alloy is harder than magnesium metal. ${ }^{2}$. |
| :--- | :--- | :--- | :--- |

Use Figure 9.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 |
| :--- | :--- | This question is about elements and compounds.

0	4	1

Balance the equation for the reaction.

$$
\mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

| 0 | 4 | . 2 Suggest one safety precaution that should be taken when heating magnesium |
| :--- | :--- | :--- | :--- | and oxygen.

\qquad
\qquad

0	4	3	Calculate the relative formula mass $\left(M_{\mathrm{r}}\right)$ of magnesium fluoride $\left(\mathrm{MgF}_{2}\right)$.

Relative atomic masses $\left(A_{\mathrm{r}}\right): \mathrm{F}=19 \quad \mathrm{Mg}=24$
\qquad
\qquad
\qquad
\qquad
Relative formula mass $\left(M_{\mathrm{r}}\right)=$ \qquad

| 0 | 4 | 4 |
| :--- | :--- | :--- | Argon is a noble gas.

Explain why no product is formed when magnesium and argon are heated together.
\qquad
\qquad
\qquad
\qquad

0	4	5

Figure 10

Most reactive

Least reactive

Draw one line from each metal to the method used to extract that metal.

Use Figure 10.

Metal
Method used to extract that metal

Extracted by electrolysis of a molten ionic compound.

Extracted from its oxide by reduction with carbon.

> Extracted from its oxide by reduction with hydrogen.

Removed from the Earth as the metal itself.

Question 4 continues on the next page

A substance conducts electricity when it has charged particles that are free to move.

0	4	6	Figure 11 represents the structure of sodium chloride.

Figure 11

Sodium chloride
Explain why sodium chloride conducts electricity when molten but not when solid.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

0	4	$\mathbf{7}$	Figure 12 represents the structure of sodium metal.

Figure 12

Sodium metal
Explain why sodium metal conducts electricity when solid.
\qquad
\qquad
\qquad

Turn over for the next question

0	5	This question is about salts.	
		Green copper carbonate and sulfuric acid can be used to produce blue copper sulfate crystals.	
0	5. 1	Excess copper carbonate is added to sulfuric acid.	
Give three observations you would make. \quad [3 marks]			
1			
2			
		3	

Green copper carbonate and sulfuric acid can be used to produce blue copper sulfate crystals.

0	5	1	Excess copper carbonate is added to sulfuric acid.

Give three observations you would make.

1
\qquad
2
\qquad
3
\qquad

| $\mathbf{0}$ | $\mathbf{5} .2$ How can the excess copper carbonate be removed? |
| :--- | :--- | :--- |

\qquad
\qquad

0	$\mathbf{5}$	$\mathbf{3}$ The pH of the solution changes during the reaction.

What is the pH of the solution at the end of the reaction?

$$
\mathrm{pH}=
$$

\qquad

0	$\mathbf{5}$.4	Copper carbonate and sulfuric acid react to produce copper sulfate.

What type of reaction is this?
\qquad

| 0 | 5 | 5 |
| :--- | :--- | :--- | Ammonium nitrate is a salt.

Figure 13 shows the maximum mass of ammonium nitrate that can dissolve in $100 \mathrm{~cm}^{3}$ of water at different temperatures.

Figure 13

Maximum mass of ammonium nitrate that can dissolve in grams per $100 \mathrm{~cm}^{3}$ of water

A student adds ammonium nitrate to water at $80^{\circ} \mathrm{C}$ until no more dissolves.
The student cools $100 \mathrm{~cm}^{3}$ of this solution of ammonium nitrate from $80^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ to produce crystals of ammonium nitrate.

Determine the mass of ammonium nitrate that crystallises on cooling $100 \mathrm{~cm}^{3}$ of this solution from $80^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
\qquad

0	6

Figure 14 shows the apparatus used to investigate the electrolysis of potassium sulfate solution.

Figure 14

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$ Potassium sulfate contains K^{+}and $\mathrm{SO}_{4}{ }^{2-}$ ions.

What is the formula of potassium sulfate?
Tick (\checkmark) one box.

$\mathrm{K}_{2} \mathrm{SO}_{4}$ \square
$\mathrm{K}\left(\mathrm{SO}_{4}\right)_{2}$ \square
$\mathrm{K}_{2}\left(\mathrm{SO}_{4}\right)_{2} \quad \square$

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{2}$ What are the volumes of gases collected in the electrolysis experiment? |
| :--- | :--- | :--- | Use Figure 14.

Volume of hydrogen $=\ldots \mathrm{cm}^{3}$
Volume of oxygen $=\quad \mathrm{cm}^{3}$

| 0 | 6 | 3 |
| :--- | :--- | :--- | A student made the following hypothesis:

'The volumes of gases collected in this electrolysis experiment are in the same ratio as hydrogen atoms to oxygen atoms in a water molecule.'

Explain how the volumes of gases collected in the experiment in Figure 14 support the student's hypothesis.

Use your answer to Question 06.2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

0	6.	4

The volumes of oxygen collected in the 4 experiments are:

$$
6 \mathrm{~cm}^{3} \quad 9 \mathrm{~cm}^{3} \quad 10 \mathrm{~cm}^{3} \quad 11 \mathrm{~cm}^{3}
$$

The mean volume of oxygen collected in the 4 experiments is $9 \mathrm{~cm}^{3}$
The measure of uncertainty is the range of a set of measurements about the mean.

What is the measure of uncertainty in the 4 experiments?
Tick (\checkmark) one box.
$9 \pm 1 \mathrm{~cm}^{3}$

$9 \pm 2 \mathrm{~cm}^{3}$

$9 \pm 3 \mathrm{~cm}^{3}$

 $25 \mathrm{~cm}^{3}$ of water.

Calculate the mass of potassium sulfate needed to make $1.0 \mathrm{dm}^{3}$ of solution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass =

0.6.5 $25 \mathrm{~m}^{3}$ water. .
\qquad

0	$\mathbf{7}$	Plan an investigation to find the order of reactivity of three metals.

You should use the temperature change when each metal reacts with hydrochloric acid.
\qquad

There are no questions printed on this page

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

