$A Q A B$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: TRILOGY

Foundation Tier

Biology Paper 1F
Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$	Foods are digested before they are absorbed into the blood.

Figure 1 shows organs in the human digestive system.
Figure 1

| $\mathbf{0}$ | $\mathbf{1}$ | . | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | Which organ is the stomach?

Tick (\checkmark) one box.
A \square
B

C \square
D \square

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ What type of enzyme is produced in the stomach? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Carbohydrase \square
Lipase \square
Protease \square

$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{3}$
	Which term describes the pH in the stomach?		

Give one reason why the stomach is this pH .
Tick (\checkmark) one box.

Acidic

Alkaline

Neutral

Reason \qquad
\qquad

$\mathbf{0}$	$\mathbf{1} .4$	$\mathbf{4}$ Which organ produces bile?

Tick (\checkmark) one box.

Large intestine

Liver

Mouth

Pancreas

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{5}$ How does bile help in the digestion of foods? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

It increases the surface area of fats.

It is an enzyme that digests protein.

It makes the pH in the small intestine acidic.

A student tested different foods for the presence of protein, starch and sugar.

0	$\mathbf{1}$	6
6	Draw one line from each food molecule to the reagent used to test for the	

Food molecule

\square
Starch
Biuret reagent
\square

Benedict's solution

Reagent

$\mathbf{0}$	1	$\mathbf{7}$	Give one safety precaution a student should take when using Benedict's solution.
[1 mark]			

\qquad
\qquad

0	$\mathbf{1}$	$\mathbf{8}$	Table 1 shows the results for one food sample.

Table 1

Test	Benedict's test	Biuret test	lodine test
Colour after test	Red	Blue	Black

Which of the tests show positive results?
Tick (\checkmark) one box.

All three tests \square

Benedict's and Biuret tests only

Benedict's and iodine tests only

Biuret and iodine tests only

0	1	9
Starch molecules are not absorbed into the blood from the digestive system.		

Give one reason why.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} \quad$ Figure 2 shows a section through a leaf. |
| :--- | :--- | :--- |

Figure 2

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ Gases pass into and out of the leaf through small pores in the surface of the leaf. |
| :--- | :--- | :--- | :--- |

What are the small pores labelled \mathbf{X} called?
Tick (\checkmark) one box.

Guard cells

Stomata

Xylem vessels \square

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	A student viewed a section of a leaf using a microscope.

The student measured the length of one of the palisade cells.
The cell image measured 28 mm in length when viewed at a magnification of $\times 400$

Calculate the real length of the palisade cell in millimetres (mm).
Use the equation:

$$
\text { real length }=\frac{\text { image length }}{\text { magnification }}
$$

\qquad
\qquad
\qquad
Real length = \qquad mm

Convert the real length of the cell from millimetres to micrometres ($\mu \mathrm{m}$).
$1 \mathrm{~mm}=1000 \mu \mathrm{~m}$
\qquad
\qquad
Real length $=$ \qquad $\mu \mathrm{m}$

$\mathbf{0}$	$\mathbf{2} .4$	4

What is the process by which carbon dioxide can move into and out of cells?
Tick (\checkmark) one box.

Active transport

Diffusion

Osmosis

Figure 3 shows a diagram of four cells.
Each cell is surrounded by carbon dioxide molecules.
Figure 3
Cell A

Cell C

Key

- Carbon dioxide molecule

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ Which cell will carbon dioxide move into at the fastest rate? |
| :--- | :--- | :--- | :--- |

Give a reason for your answer.
Tick (\checkmark) one box.
A

B \square
C \square
D

Reason \qquad
\qquad

A student investigated the effect of different colours of light on the rate of photosynthesis.

Figure 4 shows some of the apparatus the student used.
Figure 4

The student placed the apparatus in blue light, then in green light and then in red light. The student measured the rate of photosynthesis in each colour of light.

| $\mathbf{0}$ | $\mathbf{2} .6$ What two measurements should the student make to calculate the |
| :--- | :--- | :--- | :--- | rate of photosynthesis?

1 \qquad
2 \qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{7}$ | Give two variables the student should keep the same in this investigation. |

1
\qquad

2 \qquad
\qquad

Table 2 shows the results.
Table 2

Colour of light	Rate of photosynthesis in arbitrary units
Blue	9
Green	1
Red	8

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{8}$

You should:

- label the y-axis
- use a suitable scale
- plot the data from Table 2 as a bar chart
- label each bar.

Figure 5

Colour of light

| 0 | $\mathbf{2}$. | $\mathbf{9}$ Look at Table 2. |
| :--- | :--- | :--- | :--- |

What colour of light should be used to grow plants in a greenhouse?
Tick (\checkmark) one box.

Rose black spot is a disease where black spots develop on the leaves of rose plants.
thpe of pathogen causes rose black spot disease?
Tick (\checkmark) one box.

Bacterium

Protist

| $\mathbf{0}$ | $\mathbf{3} .2$ | Plants with rose black spot disease often have yellow leaves. |
| :--- | :--- | :--- | :--- |

Suggest one reason why the leaves are yellow instead of green.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ Explain why plants with yellow leaves grow slowly. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{4}$	The spread of rose black spot can be controlled using different methods.

Draw one line from each method of control to the explanation of how it works.
[2 marks]

Method of control

Remove and burn infected leaves

Water the roots of the plant only, not the leaves

Creates a barrier to the movement of pathogens

Explanation

Pathogens are killed

Reduces the chance of pathogens being spread by water droplets

Reduces the temperature so pathogens reproduce less

What type of pathogen is TMV?
Tick (\checkmark) one box.
Bacterium \square
Fungus

Protist

Virus

Malaria is a disease caused by a protist.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{6}$ How is the malaria pathogen transferred to humans? |
| :--- | :--- | :--- | :--- |

fung

\qquad
\qquad

0	$\mathbf{3}$	$\mathbf{7}$	How can the spread of malaria pathogens be reduced?

Tick (\checkmark) one box.

Avoid sexual contact

Cook food thoroughly

Drain water from swamps

Use a tissue when sneezing

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{4}$ Cigarette smoking is the main cause of cancer in the UK. |
| :--- | :--- | :--- |

0	4	1
1		

Where in a cell do mutations happen?
Tick (\checkmark) one box.

Cell membrane

Cytoplasm

Nucleus

| 0 | $\mathbf{4}$ | $\mathbf{2}$ Why do some cancers develop into large tumours? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Cells never stop dividing

Cell respiration is slowed down \square

Enzyme activity is stopped

Cigarette smoking has been linked to many different types of cancer.

| 0 | $\mathbf{4}$. | $\mathbf{3}$ Lung cancer is the most common type of cancer caused by smoking. |
| :--- | :--- | :--- | Suggest one reason why.

\qquad
\qquad

0	4.	4
A person with lung cancer can develop secondary cancers in other parts of the body.		

\qquad
\qquad
\qquad

0	4	5	Sometimes a person may need a lung transplant.

The National Health Service (NHS) will not offer a lung transplant to a person who smokes.

Suggest one reason why.
\qquad
\qquad

Figure 6 shows data about skin cancer in males for different age groups in the UK.
The data shows the number of new cases of skin cancer in one year.
Figure 6

| 0 | $\mathbf{4}$ | 6 | How many more new cases of skin cancer are there in males aged 40 to 44 than in |
| :--- | :--- | :--- | :--- | males aged 15 to $19 ?$

\qquad
\qquad
Number of new cases $=$ \qquad

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{7}$	There are no new cases of skin cancer diagnosed in males younger than 15 years of age.
	Suggest one reason why.		

\qquad
\qquad

0	4	.8	Give one conclusion from the data in Figure 6.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{9}$	Survival rates for all types of cancers have improved over the last 20 years.

Suggest two reasons why.

1 \qquad
\qquad
2 \qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{5}$	Bacteria can cause a variety of diseases in humans.

| $\mathbf{0}$ | $\mathbf{5}$. $\mathbf{1}$ What are two similarities between a bacterial cell and an animal cell? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) two boxes.

Both have a cell membrane.

Both have a cell wall.

Both have a nucleus.

Both have cytoplasm.

Both have plasmids.

0	$\mathbf{5}$	$\mathbf{2}$ Salmonella food poisoning is caused by bacteria in food.

Give one symptom of salmonella food poisoning.
Do not refer to vomiting or diarrhoea in your answer.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3}$	What is the name of the first antibiotic developed?

A child with a severe bacterial infection was given a course of antibiotics.

Figure 7 shows how the concentration of live bacteria in the child's body changed when taking the course of antibiotics.

Figure 7

| $\mathbf{0}$ | $\mathbf{5}$ | .4 | The concentration of live bacteria in the body continued to increase after starting the |
| :--- | :--- | :--- | :--- | course of antibiotics.

Suggest one reason why.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{5}$ After 3 days of taking the antibiotic:

- the child felt better
- there were still bacteria in the child's body.

Why did the child feel better?

Tick (\checkmark) one box.

Bacteria had become immune to the antibiotic.

The child had become resistant to the bacteria.

There were fewer toxins in the body than at day 0 \square

0	5	6

\qquad
\qquad

Question 5 continues on the next page

Figure 8 shows blood viewed using a microscope.
Figure 8

0	5	$\mathbf{7}$
A vaccine will stimulate the production of antibodies.		

Which part of the blood in Figure 8 produces antibodies?
Tick (\checkmark) one box.
A

B

 \square
C

D

| 0 | $\mathbf{5}$ | .8 Which part of the blood in Figure 8 starts the clotting process? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.
A

B
\square
C
\square
D
 Tick (

Question 6 continues on the next page

Figure 9 shows how a fertilised egg cell can produce specialised cells.

Figure 9

| 0 | 6 | 2 |
| :--- | :--- | :--- | Name Process A.

\qquad

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ How many cell divisions are needed to form a 16-cell embryo from the original |
| :--- | :--- | :--- | :--- | fertilised egg cell?

\qquad
\qquad
Number of cell divisions $=$ \qquad

0	6	4	In humans a fertilised egg cell contains 23 pairs of chromosomes.

How many chromosomes will there be in each of the embryo cells?

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{5}$	Figure 10 represents a cell cycle for a human embryonic cell.

Figure 10

Describe one change in the cell that occurs during each of the stages of the cell cycle.

Stage 1 \qquad
\qquad
Stage 2 \qquad
\qquad
Stage 3 \qquad
\qquad

Cell division is important in the growth of multicellular organisms.

0	6	6	Figure 11 shows the mean height of boys and of girls from birth to age 18 years.

Figure 11

Compare the growth of boys with the growth of girls.
Use data from Figure 11 in your answer.
\qquad

0	6	7

\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2022 AQA and its licensors. All rights reserved

