

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

GCSE CHEMISTRY

F

Foundation Tier Paper 2

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

0 1	This question	is about water.				
	The student n	point of pure wa				
0 1.1	Complete the	sentences. ers from the box	c .			[2 marks]
	0	4	7	10	25	100
		as a boiling point as a pH of			°C.	
0 1.2	What could th	e student use to	measure the	pH of pure wa	iter?	[1 mark]

	A different student investigated sea water.
	Sea water contains dissolved solids.
	This is the method used.
	1. Measure a 50 cm ³ sample of the sea water.
	2. Heat the sample until all the water has evaporated.
	3. Measure the mass of solid that remains.
	4. Repeat steps 1 to 3 three more times.
0 1.3	Which two pieces of equipment were needed in this investigation?
	[2 marks] Tick (✓) two boxes.
	Balance
	Measuring cylinder
	Ruler
	Thermometer
	Timer
	Question 1 continues on the next page

0 1.4 Table 1 shows the results.

Table 1

Sea water sample	Mass of solid that remained in grams
1	1.73
2	1.70
3	1.75
4	1.78

	Calculate the mean mass of solid that remained.	[2 marks]
	Mean mass =	g
0 1.5	A 50 cm ³ sample of sea water from a different source contained 1.50 g of dissolved solids.	
	Calculate the mass of dissolved solids in 1000 cm³ of this sea water.	[2 marks]
	Mass =	g

	Sodium chloride is a dissolved solid in sea wat	er.		C
	Sodium chloride contains sodium ions and chloride	oride ions.		
0 1.6	Complete the sentence.			
	Choose the answer from the box.		[1 mark]	
	crimson lilac	у	ellow	
	The student tested sea water for sodium ions to	using a flame test.		
	The colour of the flame was	·		
0 1.7	Complete the sentence.			
	Choose the answer from the box.		[1 mark]	
	h			
	brown green		vhite	
	The student tested sea water for chloride ions silver nitrate solution.	by adding nitric acid an	d	
	The colour of the precipitate formed was			
	Turn over for the next que	estion		

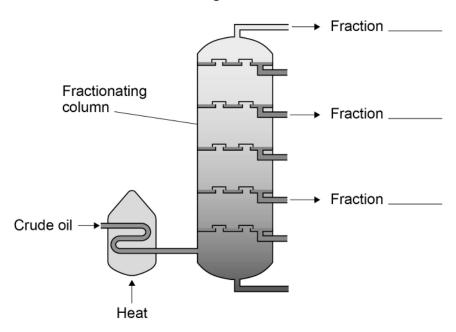

- **0 2** This question is about hydrocarbons in crude oil.
- 0 2 . 1 Table 2 shows information about three fractions obtained from crude oil.

Table 2

Fraction	Boiling point range in °C
Α	200–300
В	100–150
С	Below 30

Figure 1 shows the fractionating column used to separate fractions A, B and C.

Figure 1

The temperature of the fractionating column is:

- 30 °C at the top
- 400 °C at the bottom.

Complete **Figure 1** to show where fractions **A**, **B** and **C** are collected.

[1 mark]

0 2.2 Table 3 shows information about three fractions obtained from crude oil.

Table 3

Fraction	Range of number of carbon atoms in each molecule
Petrol	5–12
Diesel oil	15–19
Heavy fuel oil	20–40

Complete the sentences.

Choose answers from the box.

[2 marks]

lower	the same	higher
mpared to petrol, the viscos	ity of heavy fuel oil is	
mpared to petrol, the flamm	ability of diesel oil is	

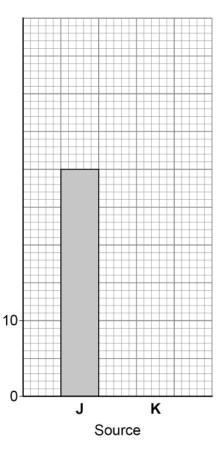
Question 2 continues on the next page

Table 4 shows the percentage of two fractions obtained from two different sources of crude oil.

Table 4

Source	Percentage (%) of fraction		
	Kerosene	Heavy fuel oil	
J	13	30	
К	4	44	

0 2 . 3 Complete Figure 2.


You should:

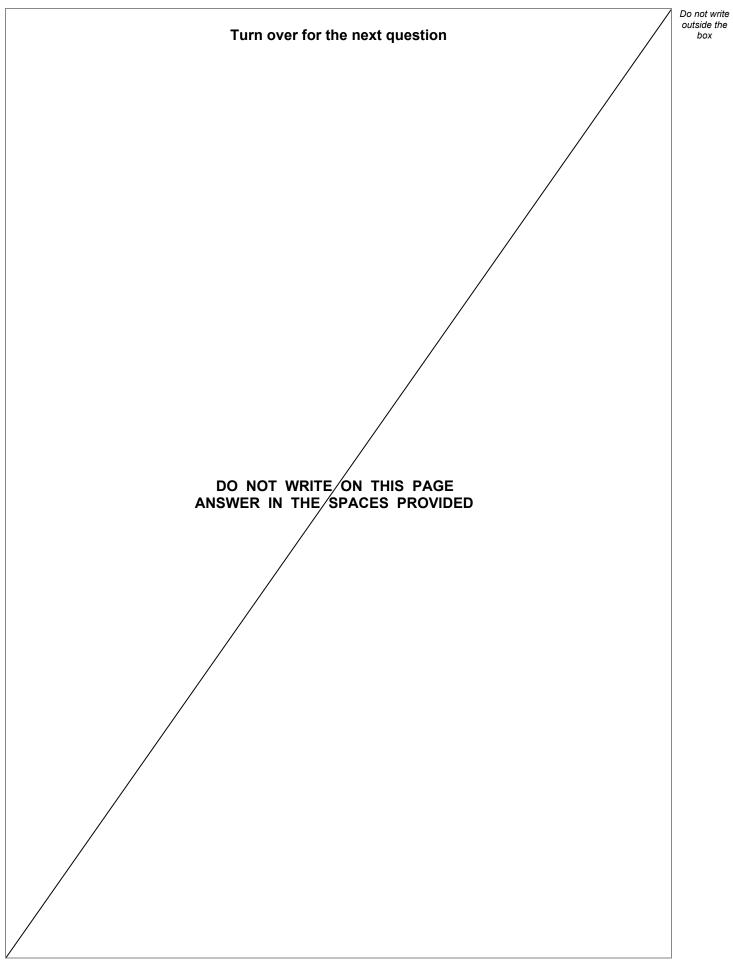
- complete the y-axis scale
- plot the percentage of the heavy fuel oil fraction obtained from source **K**.

Use Table 4.

[2 marks]

Figure 2

Percentage (%) of heavy fuel oil fraction



0 2.4	Kerosene is in higher demand than heavy fuel oil.
	Suggest why crude oil from source J is in higher demand than crude oil from source K .
	Use Table 4 . [1 mark]
	Large hydrocarbon molecules can be cracked to produce smaller hydrocarbon molecules including alkanes.
0 2.5	Which two of the following can be used to crack large hydrocarbon molecules? [2 marks]
	Tick (✓) two boxes.
	A catalyst
	A fertiliser
	Air
	Ozone
	Steam
0 2.6	Alkanes have the general formula C _n H _{2n+2}
	Complete the formula of the alkane molecule containing 11 carbon atoms. [1 mark]
	C ₁₁ H

0 2 . 7	C₂H₀ is an alkane.	Do not write outside the box
	Which type of bond is found in a C_2H_6 molecule? [1 mark]	
	Tick (✓) one box.	
	A double bond between two carbon atoms.	
	A double bond between two hydrogen atoms.	
	A single bond between two carbon atoms.	
	A single bond between two hydrogen atoms.	
0 2 . 8	Which two substances are produced when alkanes completely combust?	
	Tick (✓) two boxes. [2 marks]	
	Carbon	
	Carbon dioxide	
	Carbon monoxide	
	Hydrogen	
	Water	12

0 3

This question is about the Earth's atmosphere.

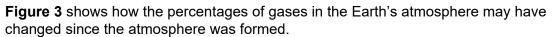
Table 5 shows:

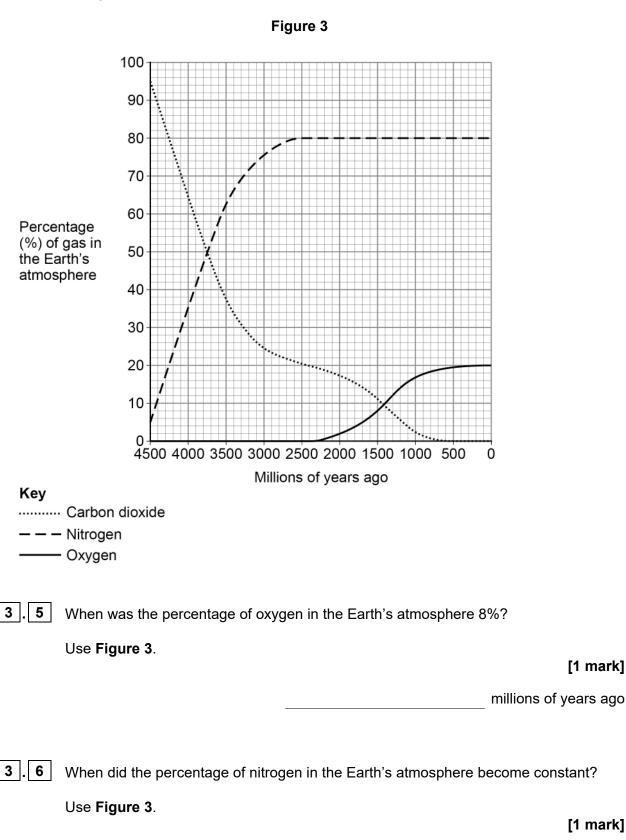
- the estimated percentages of gases in the Earth's early atmosphere
- the percentages of gases in the Earth's atmosphere today.

Table 5

Gas Estimated percentage (%) the Earth's early atmosphere		Percentage (%) in the Earth's atmosphere today
Nitrogen	1.8	X
Oxygen	0.2	20.95
Carbon dioxide	96.0	0.04
Other gases	2.0	0.92

0 3.1	Calculate value X in T a	able 5.	[1 mark]
		X =	<u> </u>
0 3.2	Which two other gases Tick (✓) two boxes.	s may have been in the Earth's early atmosphere?	[2 marks]
	Ammonia		
	Coal		
	Limestone		
	Methane		
	Poly(ethene)		

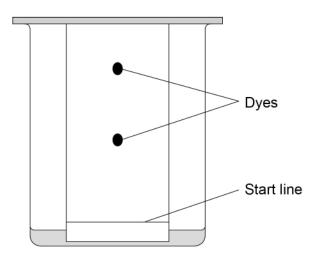



Do not write outside the box

	Algae and plants increased the percentage of oxygen in the Earth's atmosphere.
	The same process in algae and plants decreased the percentage of carbon dioxide in the Earth's atmosphere.
0 3.3	Which process in algae and plants increased the percentage of oxygen in the Earth's atmosphere? [1 mark]
	Tick (✓) one box.
	Fermentation
	Photosynthesis
	Rusting
	Sedimentation
0 3.4	Which two other processes decreased the percentage of carbon dioxide in the Earth's atmosphere? [2 marks] Tick (✓) two boxes.
	Burning fossil fuels
	Dissolving carbon dioxide in oceans
	Eruption of volcanoes
	Evolution of animals
	Formation of sedimentary rocks

millions of years ago

0 3 . 7	Crude oil was formed from an ancient biomass as the Earth's atmosphere evolved.	Do not write outside the box
0,0,.,		
	What did this ancient biomass mainly consist of? [1 mark]	
	Tick (✓) one box.	
	Limestone	
	Plankton	
	Sand	
0 3.8	Most of the percentages of the gases in Figure 3 are estimated values.	
	Why have scientists used estimated values for the percentages of the gases in Figure 3 ?	
	[1 mark]	
		10
	Turn over for the next question	
	rum over for the next question	
	l l	



0 4.3 Ethanol is used as a solvent in some inks.

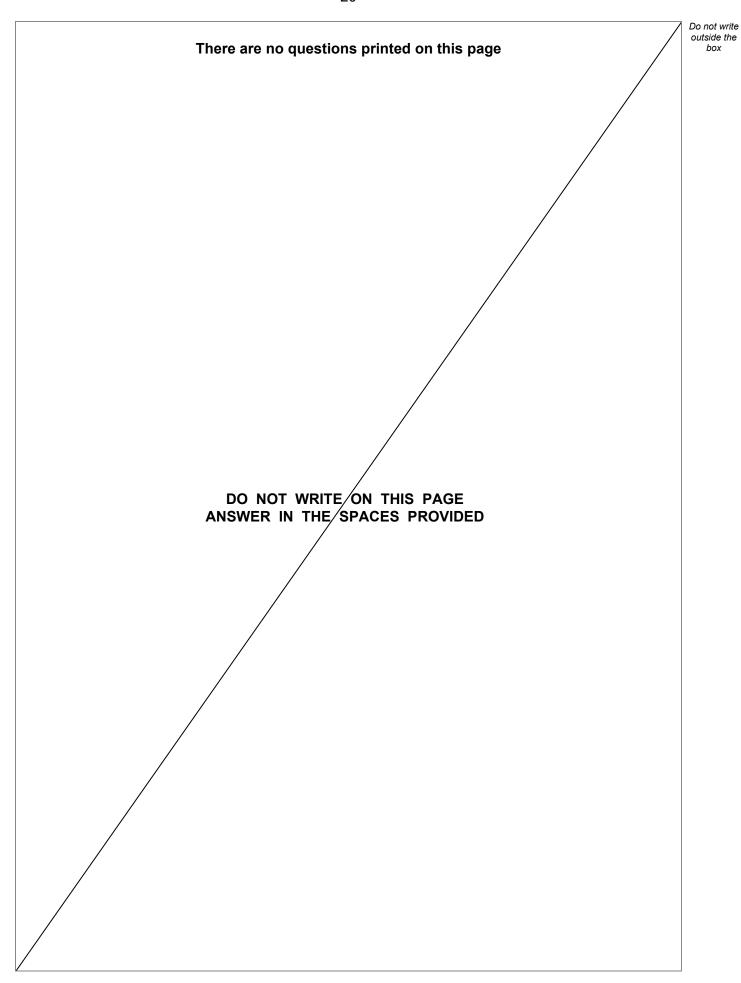
A student used paper chromatography to show that an ink contained two different dyes.

Figure 4 shows the apparatus at the end of the investigation.

Figure 4

Describe a method the student could have used for the investigation.	[4 marks]
	-

0 4 . 4	Ethanol can be produced from sugar solution by fermentation.			
	What must b	pe added to sugar solution to p	roduce ethanol?	[1 mark]
	E5 and E10	are types of fuel used in cars.		
	These fuels	contain ethanol and petrol.		
	Table 6 sho	ws information about E5 and E	10.	
		Table 6		
	Fuel	Percentage (%) by mass of ethanol	Percentage (%) by mass of petrol	
	E5	5	95	
	E10	10	90	
0 4 . 5	Calculate the	e mass of ethanol in 4.4 kg of l	≣5.	
	Give your ar	nswer in grams.		
	Use Table 6	5.		[3 marks]
				[e mame]
			Mass =	g
				5



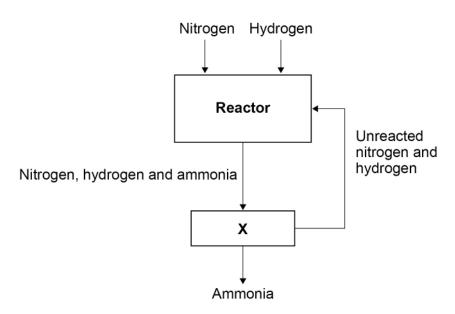
Do not write outside the box

0 4 . 6	The ethanol in	E5 and E10 i	s produced from sugar.		outsi b
	Sugar is produ	uced from plar	nts.		
	Explain why the		of E10 removes more carbon	dioxide from the atmosphere	
	Use Table 6 .			[3 marks]	
0 4 . 7	Table 7 shows	s the energy o	ontent of ethanol and petrol. Table 7		
			Energy content in MJ (megajoules) per kg		
		Ethanol	30.0		
		Petrol	46.4		
	Suggest one of	disadvantage	of using E10 instead of E5.		
	Complete the			[1 mark]	
	A disadvantag	e of using E1	0 is that	[1 mark]	

14

		21		
0 5	Ammonia is produced in the I	Haber process.		
	The raw materials for the Hab	The raw materials for the Haber process are nitrogen and hydrogen.		
0 5 . 1	Draw one line from each raw material to the source of that raw material.			[2 marks]
	Raw material		Source of raw material	
			Air	
			Clay	
	Nitrogen	'		I
			Limestone	
	Hydrogen			
			Natural gas	
		ı		1
			Sand	
0 5.2	What are the states of nitroge	en and of hydroger	n when used in the Haber pr	ocess?
	Tick (✓) one box.			[1 mark]
	State of nitrogen	State of hydr	ogen	
	Gas	Gas		
	Gas	Liquid		
	Liquid	Gas		
	Liquid	Liquid		

Do not write outside the box


0 5 2	The word equation for the production of ammonia is:	Do not write outside the box
0 5 . 3	The word equation for the production of ammonia is:	20x
	nitrogen + hydrogen	
	The atom economy of the reaction is 100%.	
	How does the word equation show that the atom economy is 100%?	
	[1 mark]	
	Tick (✓) one box.	
	The reaction is reversible.	
	There are two reactants.	
	There is one product.	

Do not write outside the box

0 5.4 Figure 5 represents the Haber process.

Figure 5

A mixture of nitrogen, hydrogen and ammonia enters X.

Complete the sentences.

Choose answers from the box.

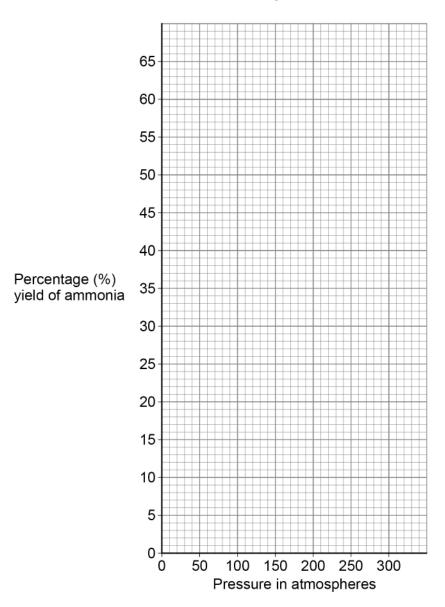
[2 marks]

evaporated	filtered	liquefied	recycled
In X , the mixture is coo	led.		
The ammonia can be r	emoved from X beca	ause the ammonia is	
-		_·	
The unreacted nitroger	and hydrogen are		

Table 8 shows the percentage yield of ammonia at different pressures.

Table 8

Pressure in atmospheres	Percentage (%) yield of ammonia
50	20
100	33
150	44
200	52
250	59
300	64


Do not write outside the box

0 5.5 Plot the data from Table 8 on Figure 6.

Draw a line of best fit.

[3 marks]

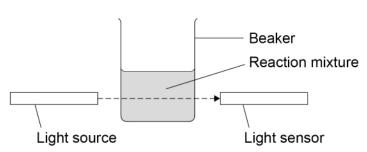
Figure 6

0 5.6 What is the effect of increasing the pressure on the percentage yield of ammonia?

Use **Table 8**.

[1 mark]

10


Do not write outside the

0 6

A student investigated the rate of reaction between sodium thiosulfate solution and hydrochloric acid.

Figure 7 shows the apparatus used.

Figure 7

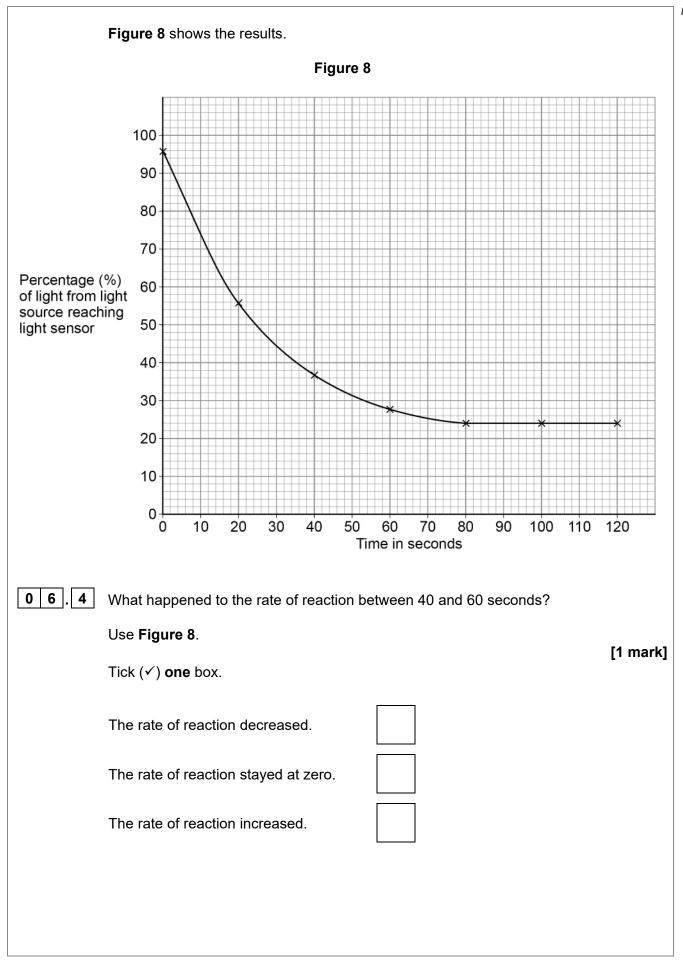
When hydrochloric acid is added to sodium thiosulfate solution, the mixture gradually becomes cloudy.

A smaller percentage of light from the light source reaches the light sensor as the mixture becomes more cloudy.

This is the method used.

- 1. Measure 50 cm³ of sodium thiosulfate solution into the beaker.
- 2. Add 10 cm³ of hydrochloric acid to the sodium thiosulfate solution.
- 3. Immediately start a timer.
- 4. Record the percentage of light from the light source that reaches the light sensor every 20 seconds for 120 seconds.

0 6 . 1


Balance the equation for this reaction.

[1 mark]

$$Na_2S_2O_3 + 2HCl \rightarrow$$
 NaCl + H_2O + SO_2 + S

0 6 . 2	The mixture becomes cloudy because the sulfur produced is a solid. What is the state symbol for a solid? [1 mark] Tick (✓) one box. (aq)	Do not write outside the box
	(1)	
	(s)	
0 6 . 3	The student monitored the cloudiness of the reaction mixture using a light sensor.	
	What other piece of equipment could be used to monitor the cloudiness of the reaction mixture?	
	[1 mark] Tick (✓) one box.	
	A balance	
	A cross on a piece of paper	
	A gas syringe	
	A thermometer	
	Question 6 continues on the next page	

1 mark]	Do not write outside the box
tration 1 mark]	

0 6 . 5	The student stopped taking measurements after 120 seconds because the percentage of light reaching the sensor stayed constant.		
	Why did the percentage of light reaching the sensor stay constant? [1 mark]		
	Tick (✓) one box.		
	No light was reaching the sensor.		
	One of the reactants was used up.		
	The reaction was too vigorous.		
0 6.6	The student repeated the experiment using sodium thiosulfate solution of a higher concentration.		
	How would the line of best fit for sodium thiosulfate solution of a higher concentration compare with the line of best fit on Figure 8 ?		
	Tick (✓) one box.		
	Initially the line of best fit would be less steep.		
	Initially the line of best fit would be the same steepness.		
	Initially the line of best fit would be steeper.		
	Question 6 continues on the next page		

			Do not write
0 6.7	The student then investigated the effect of changing the temperature on the of reaction.	e rate	outside the box
	The student used sodium thiosulfate solution and hydrochloric acid which hept in an ice bath.	ad been	
	Which are two effects of using reactants kept in an ice bath rather than at room temperature?		
	Tick (✓) two boxes.	[2 marks]	
	Fewer reactant particles have the activation energy.		
	The reactant particles collide more frequently.		
	The reactant particles have more energy.		
	The reactant particles move more slowly.		
	There are fewer reactant particles in the same volume.		8

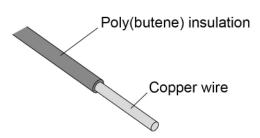
0 7	This question is about fertilisers. Ammonium nitrate is a fertiliser containing nitrogen. Complete the sentence. Choose the answer from the box. [1 mark]	Do not write outside the box
	hydrochloric acid nitric acid sulfuric acid	
	Ammonium nitrate is produced by reacting ammonia with	
0 7.2	Ammonium nitrate fertiliser is sold in 600 kg bags.	
	A farmer spreads 40 bags of ammonium nitrate fertiliser on land with an area of 800 000 m ² .	
	Calculate the mass of ammonium nitrate fertiliser spread per m² of land. [2 marks]	
	Mass per m² = kg/m²	
	Question 7 continues on the next page	

Do not write 0 7.3 A scientist works for a company which makes ammonium nitrate fertiliser. The scientist investigates the effect of different fertilisers on crop growth. The scientist concludes that the ammonium nitrate fertiliser improves crop growth more than other fertilisers. Suggest one reason why this conclusion might not be valid. [1 mark]

outside the

	A different fertiliser containing nitrogen has the formula K₂NH₄PO₄	Do not write outside the box
0 7.4	How many atoms of nitrogen are in the formula K ₂ NH ₄ PO ₄ ? [1 mark]	
0 7 . 5	Nitrogen and potassium in the fertiliser K ₂ NH ₄ PO ₄ are important for good crop growth.	
	Which other element in the fertiliser K ₂ NH ₄ PO ₄ is important for good crop growth? [1 mark]	
	Tick (✓) one box.	
	Hydrogen	
	Oxygen	
	Phosphorus	
0 7.6	Some fertilisers are mixtures of different compounds in fixed proportions.	
	What name is given to a mixture of different compounds in fixed proportions? [1 mark]	

Turn over for the next question


0 8

This question is about copper wire and copper compounds.

Copper is used to make electrical wires.

Figure 9 shows how copper electrical wire is insulated using an addition polymer called poly(butene).

Figure 9

0 8. 1 The addition polymer poly(butene) has the displayed structural formula:

$$\begin{array}{c|cccc}
CH_3 & CH_3 \\
 & | \\
 C & C \\
 & | \\
 H & H \\
 & n
\end{array}$$

Poly(butene) is produced from the monomer butene.

Complete **Figure 10** to show the displayed structural formula of butene.

[2 marks]

Figure 10

C

н н

	Copper can be obtained by recycling scrap copper wire.	Do not write outside the box
0 8.2	Suggest why poly(butene) insulation must be removed from scrap copper wire before the copper is recycled. [1 mark]	
0 8.3	Describe how scrap copper wire can be recycled to make new copper water pipes. [2 marks]	
0 8.4	Suggest two reasons why recycling scrap copper is more sustainable than extracting copper from copper ores. [2 marks]	
	1	
	Question 8 continues on the next page	
	Question o continues on the next page	

	Copper sulfate is a compound of copper.	
	Copper sulfate solution contains copper(II) ions and sulfate ions.	
0 8.5	A solution can be added to copper sulfate solution to show the presence of copper(II) ions.	
	Name the solution added.	
	Give the result of the test. [2 marks	16
	Name of solution added	_
	Result _	-
		_
0 8.6	Describe one test to show the presence of sulfate ions in copper sulfate solution.	
	Give the result of the test. [2 marks	s1
	Test	_
		_
	Result	_
		_

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

0 9

A student investigated the change in mass when hydrated cobalt chloride was heated.

The word equation for the reaction is:

hydrated cobalt chloride ≠ anhydrous cobalt chloride + water

This is the method used.

- 1. Add 2.0 g of hydrated cobalt chloride to an empty test tube.
- 2. Measure the mass of the test tube and contents.
- 3. Heat the test tube and contents gently for 30 seconds.
- 4. Allow the test tube and contents to cool.
- 5. Measure the mass of the test tube and contents.
- 6. Repeat steps 3 to 5 until the mass of the test tube and contents does not change.

Table 9 shows the results.

Table 9

Total heating time in seconds	Mass of test tube and contents in grams
0	26.5
30	26.2
60	25.9
90	25.6
120	25.6

Do not write outside the box

0 9.1	Determine the mass of the empty test tube. [1 mark]
	Mass of empty test tube = g
0 9.2	Explain why the mass of the test tube and contents decreased. [2 marks]
0 9.3	Suggest why the test tube and contents were heated until the mass did not change. [1 mark]
	Question 9 continues on the next page

Do not write outside the box

	Energy is taken in from the surroundings when hydrated cobalt chloride is hear	ted.	outside bo.
0 9.4	When 238 g of hydrated cobalt chloride is heated until the mass does not char 88.1 kJ of energy is taken in.	nge,	
	The student heated 2.00 g of hydrated cobalt chloride until the mass did not ch	nange.	
	Calculate the energy taken in during this reaction.		
	Give your answer to 3 significant figures.	marks]	
	Energy taken in (3 significant figures) =	kJ	
0 9.5	What type of reaction takes place when hydrated cobalt chloride is heated?	[1 mark]	
			8

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

1	0	This question is about life cycle assessments (LCAs).
		• • • • • • • • • • • • • • • • • • • •

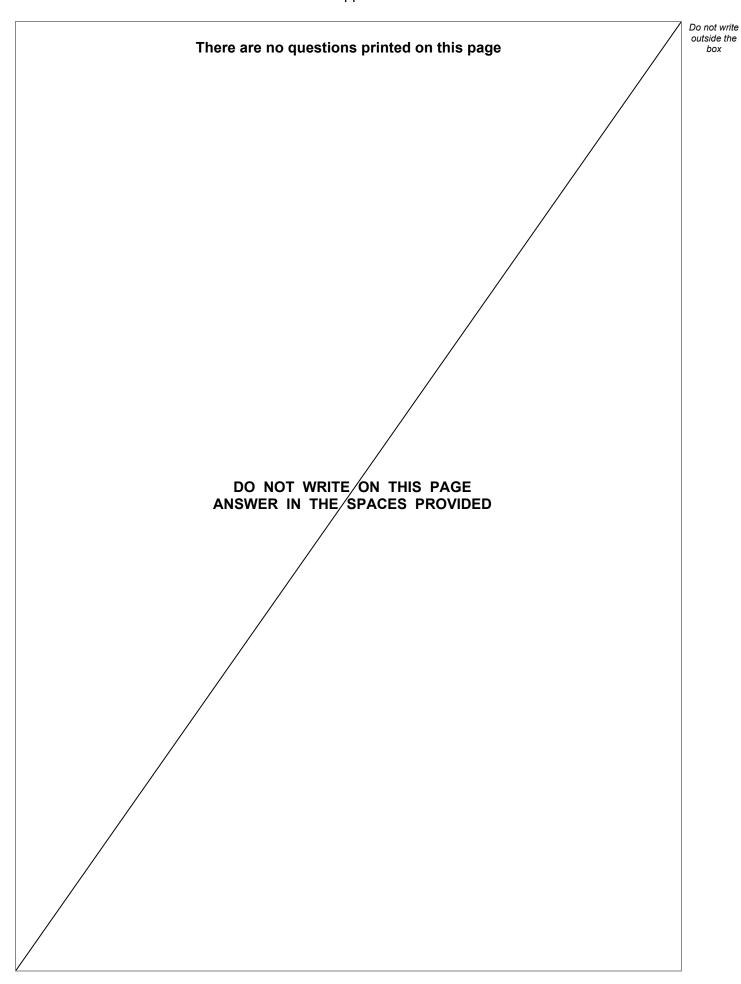
1 0. 1 Milk bottles can be made from glass or from a polymer.

Table 10 shows information about milk bottles of equal volume.

Table 10

	Glass	Polymer
Raw materials	Limestone Sand Sodium carbonate	Crude oil
Energy needed to process raw materials in kilojoules	6750	1710
Energy needed to manufacture bottle in kilojoules	750	90
Mass of bottle in grams	200	20
Mean number of times used during lifetime of bottle	25	1
One disposal method at end of useful life	Recycled to make different glass products	Recycled to make different polymer products

Evaluate the use of glass for milk bottles compared with the use of a polymer for milk bottles.


Use features of life cycle assessments (LCAs) in your answer.

Use Table 10 .	[6 marks]

1 0 . 2	Milk is also sold in cardboard cartons. A carton is made using 40 cm³ of cardboard. The density of the cardboard is 0.40 g/cm³.	Do not write outside the box
	Calculate the mass of the carton.	
	Use the equation: $density = \frac{mass}{volume}$ [3 marks]	
	Mass = g	9
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Additional page, if required. Write the question numbers in the left-hand margin.

48 There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

Do not write outside the