

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			 _

GCSE CHEMISTRY

Foundation Tier Paper 1

Thursday 17 May 2018

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

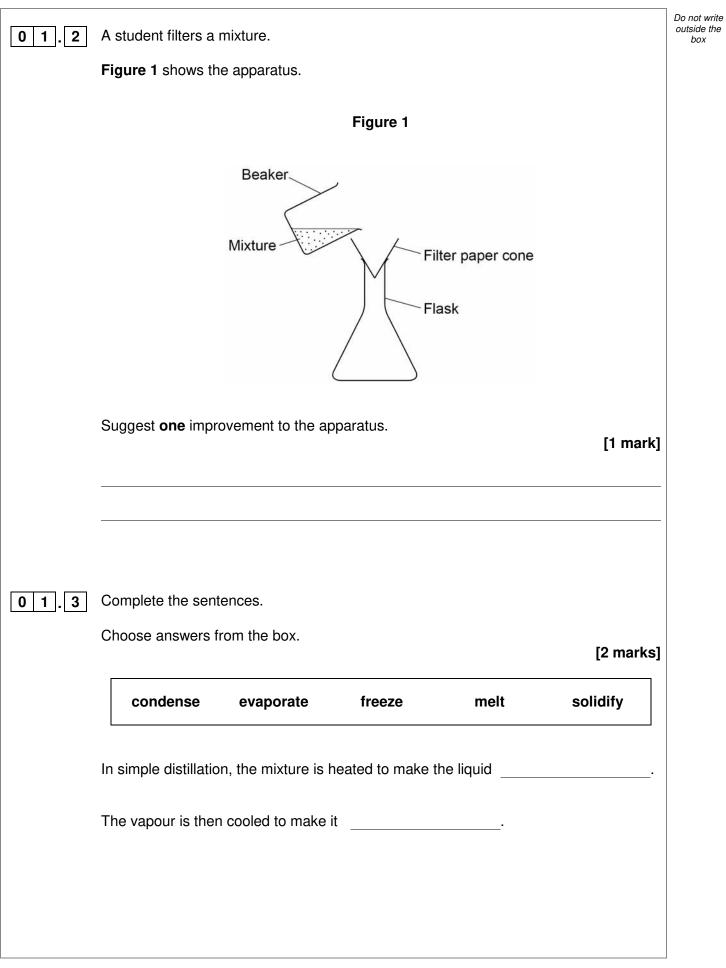
- a ruler
- a scientific calculator
- the periodic table (enclosed).

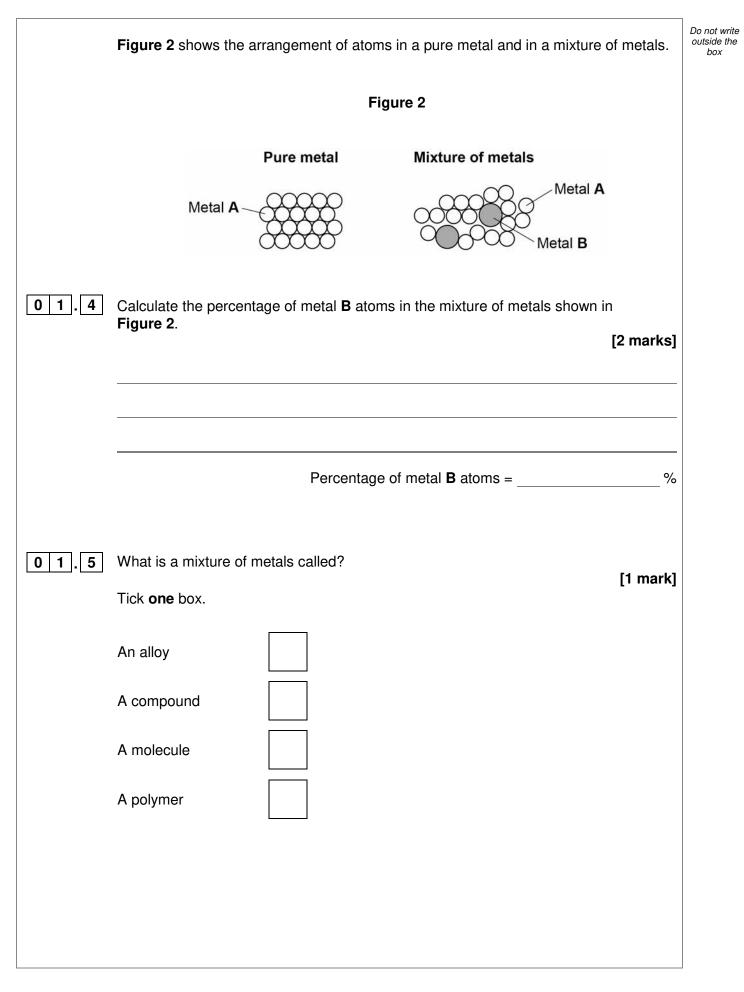
Instructions

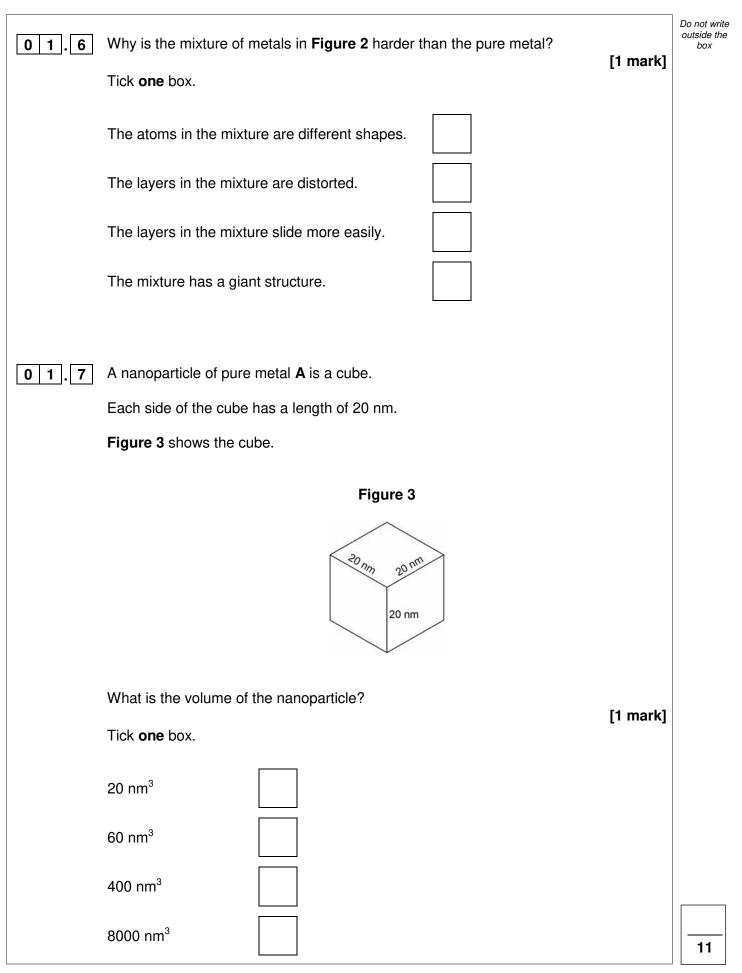
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.


For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TOTAL				


Draw one line from each substance and mix	ture to the best method of separation. [3 mark]	sl
Substance and mixture	Method of separation	
	Chromatography	
Ethanol from ethanol and water		
	Crystallisation	
Salt from sea water	Electrolysis	
	Filtration	
The different colours in black ink		
	Fractional distillation	



IB/G/Jun18/8462/1F

02	The halogens are elements in Group 7.	Do not write outside the box
02.1	Bromine is in Group 7.	
	Give the number of electrons in the outer shell of a bromine atom. [1 mark]	
02.2	Bromine reacts with hydrogen. The gas hydrogen bromide is produced. What is the structure of hydrogen bromide? Tick one box.	
	Giant covalentIonic latticeMetallic structureSmall molecule	
02.3	What is the formula for fluorine gas? [1 mark] Tick one box.	

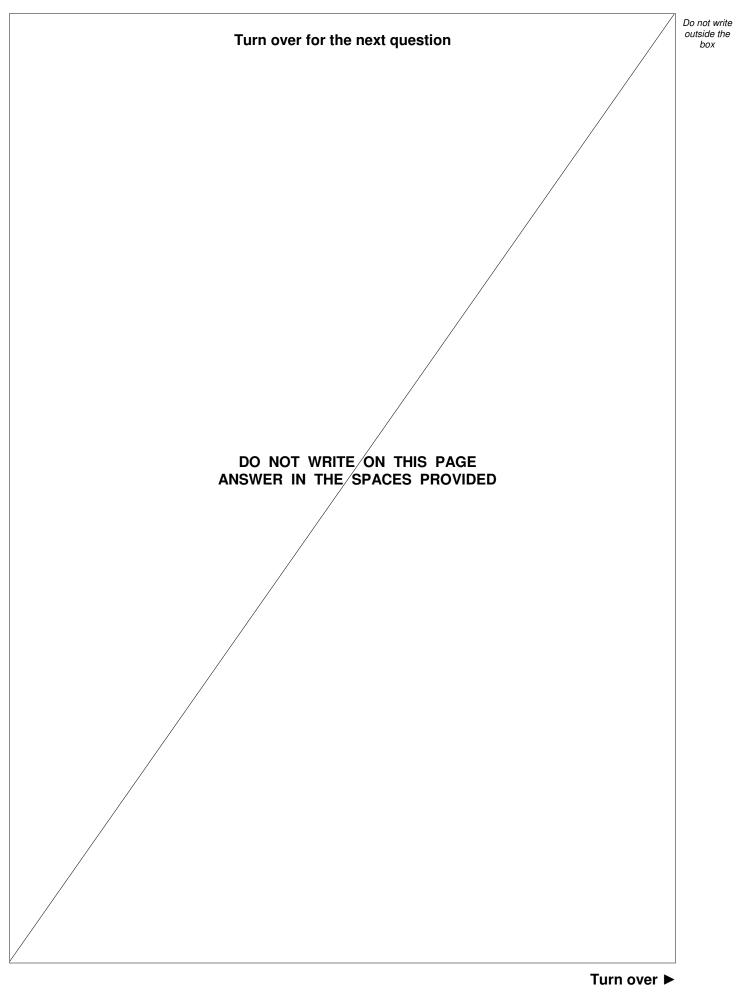
A student mixes solutions of halogens with solutions of their salts.

 Table 1 shows the student's observations.

Table 1

	Potassium chloride (colourless)	Potassium bromide (colourless)	Potassium iodide (colourless)
Chlorine (colourless)		Solution turns orange	Solution turns brown
Bromine (orange)	No change		Solution turns brown
lodine (brown)	No change	No change	

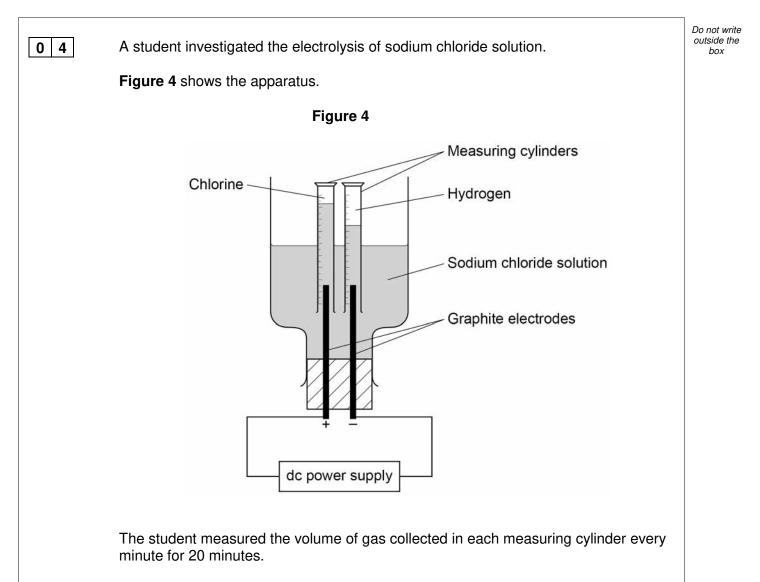
0 2. **4** Explain how the reactivity of the halogens changes going down Group 7.


Use the results in Table 1.

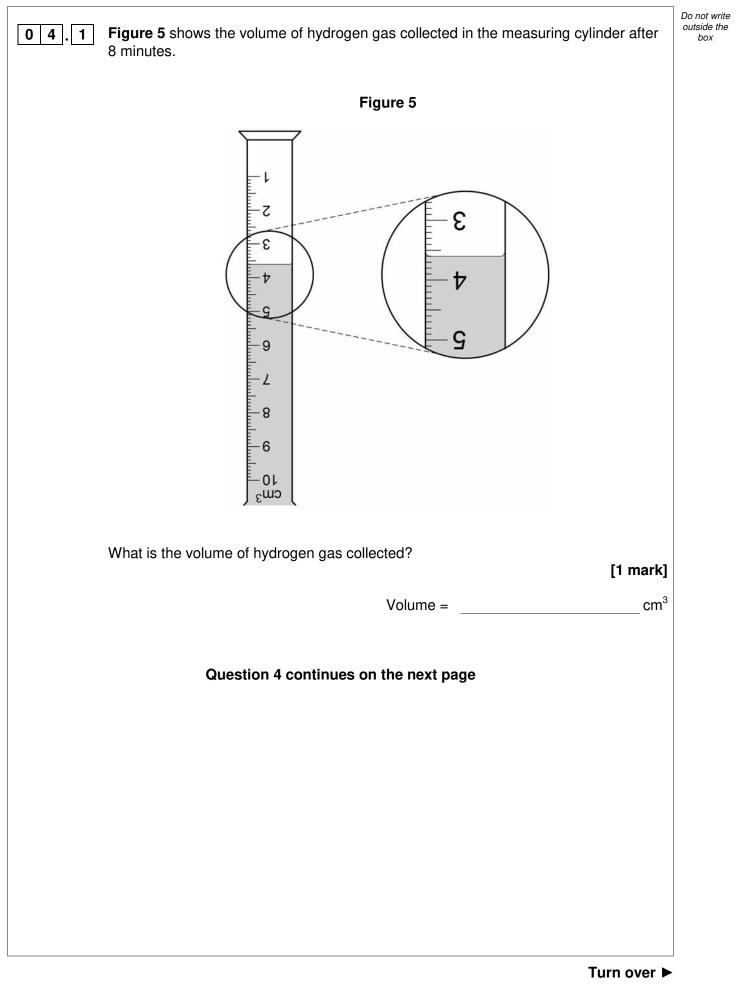
[3 marks]

Question 2 continues on the next page

	A company uses chlorine to produce titanium chloride from titanium dioxide.	Do not write outside the box
02.5	What is the relative formula mass (M_r) of titanium dioxide, TiO ₂ ?	
	Relative atomic masses (A_r): O = 16 Ti = 48 [1 mark]	
	Tick one box.	
	64	
	80	
	128	
	768	
02.6	The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.	
	However, the company finds that 500 g of titanium dioxide only produces 900 g of titanium chloride.	
	Calculate the percentage yield. [2 marks]	
	Percentage yield =%	[]
		9

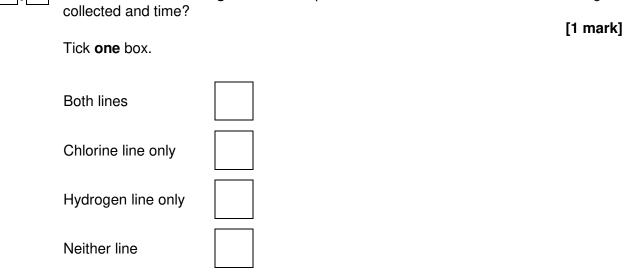


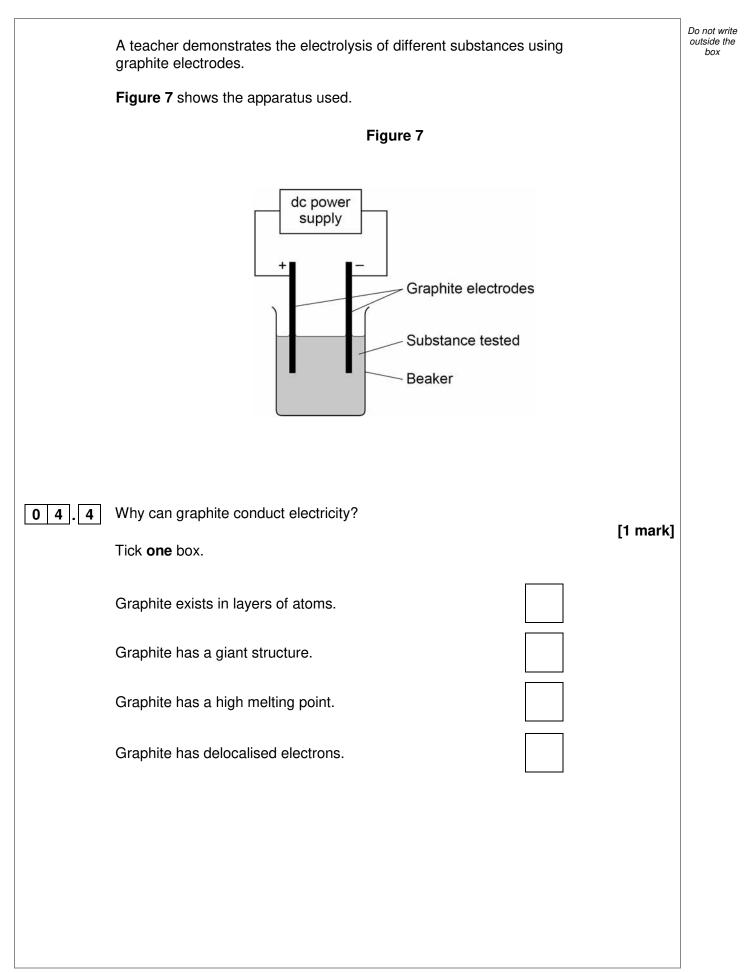
0 3	This question is abc	ut the structure of the atom.		Do not write outside the box	
0 3.1	Complete the sente	nces.			
	Choose answers from the box.				
	Each word may be used once, more than once, or not at all. [5 marks]				
	electro	n ion n	eutron		
		nucleus proton			
	The centre of the at	om is the			
	The two types of pa	rticle in the centre of the atom ar	re the proton		
	and the				
	James Chadwick pr	oved the existence of the			
	Niels Bohr suggeste	ed particles orbit the centre of the	e atom. This type of particle		
	is the				
	The two types of pa	rticle with the same mass are the	e neutron		
	and the				
	Table 2 shows infor	mation about two isotopes of ele Table 2	ement X .		
		Mass number	Percentage (%) abundance		
	Isotope 1	63	70		
	Isotope 2	65	30		



03.2	Calculate the relative atomic mass (A_r) of element X using the equation:	Do not wr outside th box
A _r =	(mass number × percentage) of isotope 1 + (mass number × percentage) of isotope 2 100	
	Use Table 2.	
	Give your answer to 1 decimal place. [2 marks]	
	<i>A</i> _r =	
03.3	Suggest the identity of element X .	
	Use the periodic table. [1 mark]	
	Element X is	
	\mathbf{T} is a set of the set \mathbf{N} is the set \mathbf{N} is the set \mathbf{N}	
0 3.4	The radius of an atom of element X is 1.2×10^{-10} m The radius of the centre of the atom is $\frac{1}{10000}$ the radius of the atom.	
	Calculate the radius of the centre of an atom of element X .	
	Give your answer in standard form.	
	[2 marks]	
	Radius =m	10






Which of the lines on Figure 6 show a positive correlation between the volume of gas 0 4 . 3 collected and time?

Do not write outside the box

Question 4 continues on the next page

0 4 . 5 The teacher demonstrates the electrolysis of:

- molten zinc chloride
- potassium bromide solution.

Complete **Table 3** to predict the products.

Choose answers from the box.

[4 marks]

Do not write outside the box

chlorine bromine hydrogen oxygen potassium zinc

Table 3

Substance electrolysed	Product at cathode (negative electrode)	Product at anode (positive electrode)
Molten zinc chloride		
Potassium bromide solution		

Turn over for the next question

8

outside the box

Do not write

A student investigated the mass of copper oxide produced by heating copper carbonate.

This is the method used.

0 5

- 1. Weigh an empty test tube.
- 2. Weigh 2.00 g of copper carbonate into the test tube.
- 3. Heat the copper carbonate until there appears to be no further change.
- 4. Re-weigh the test tube and copper oxide produced.
- 5. Subtract the mass of the empty tube to find the mass of copper oxide.
- 6. Repeat steps 1–5 twice.
- 7. Repeat steps 1–6 with different masses of copper carbonate.

 Table 4 shows the student's results.

Table 4

Mass of copper	Mass of copper oxide in g				
carbonate in g	Trial 1	Trial 2	Trial 3	Mean	
2.00	1.29	1.27	1.31	1.29	
4.00	2.89	2.57	2.59	2.58	
6.00	3.85	3.90	3.87	3.87	
8.00	5.12	5.15	5.09	X	
10.00	6.42	6.45	6.45	6.44	

The equation for the reaction is:

 $CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$

Complete the sentence.

The state symbol shows carbon dioxide is a

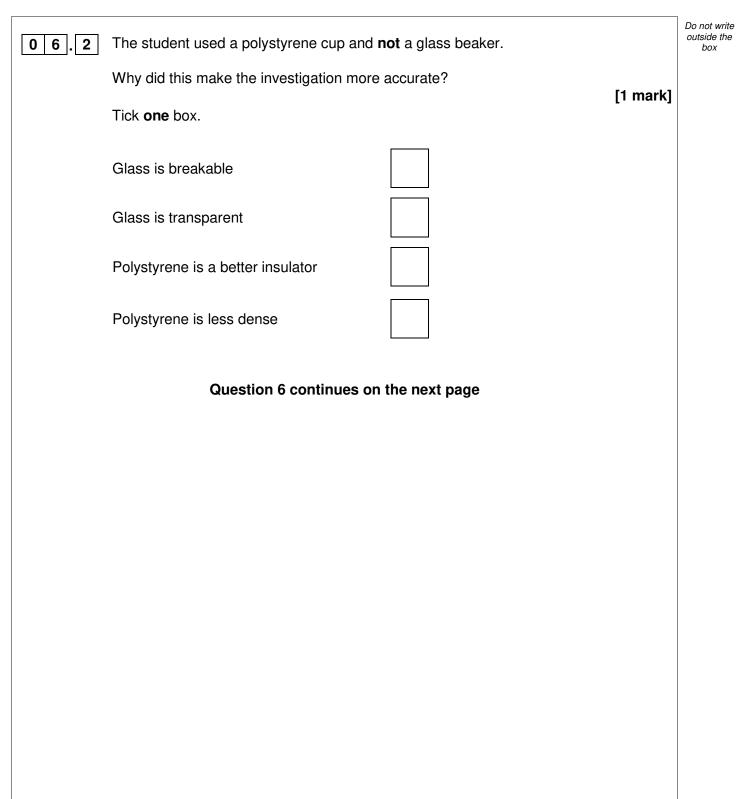
0 5

1

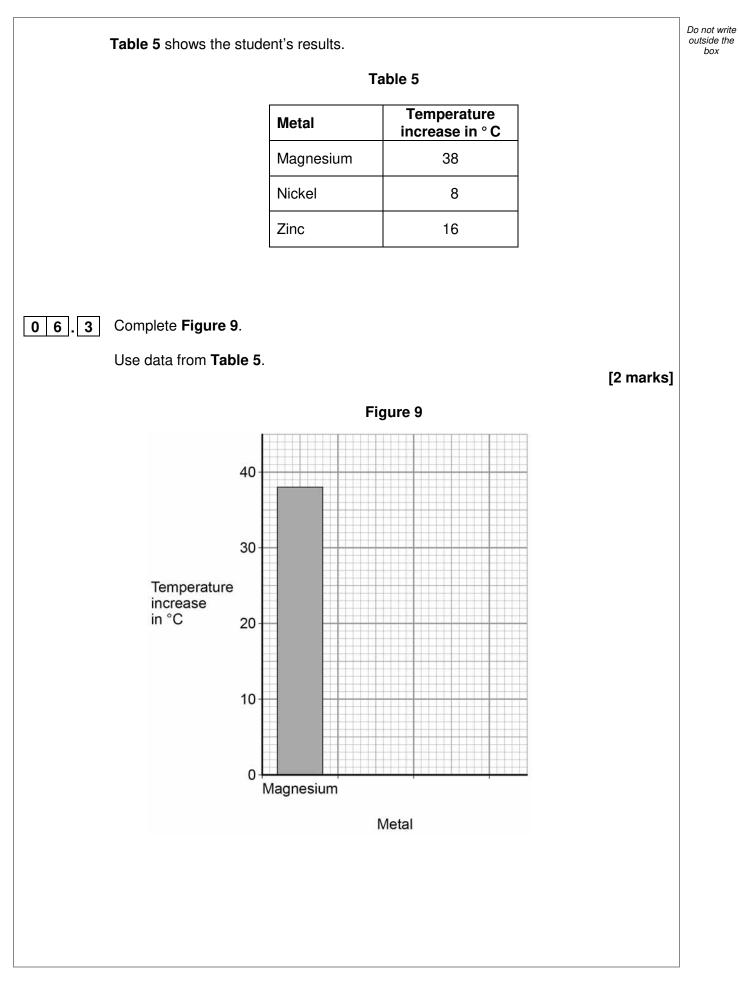
[1 mark]

0 5.2	Why do the contents of the test tube lose mass in the investigation?	[1 mark]	Do not write outside the box
0 5.3	Calculate the mean mass X in Table 4 .	[1 mark]	
	X =	g	
0 5.4	One of the results in Table 4 is anomalous.		
	Which result is anomalous?	[1 mark]	
0 5.5	Mass of copper carbonateg Trial Suggest how the investigation could be improved to make sure the reaction		
	is complete.	[2 marks]	

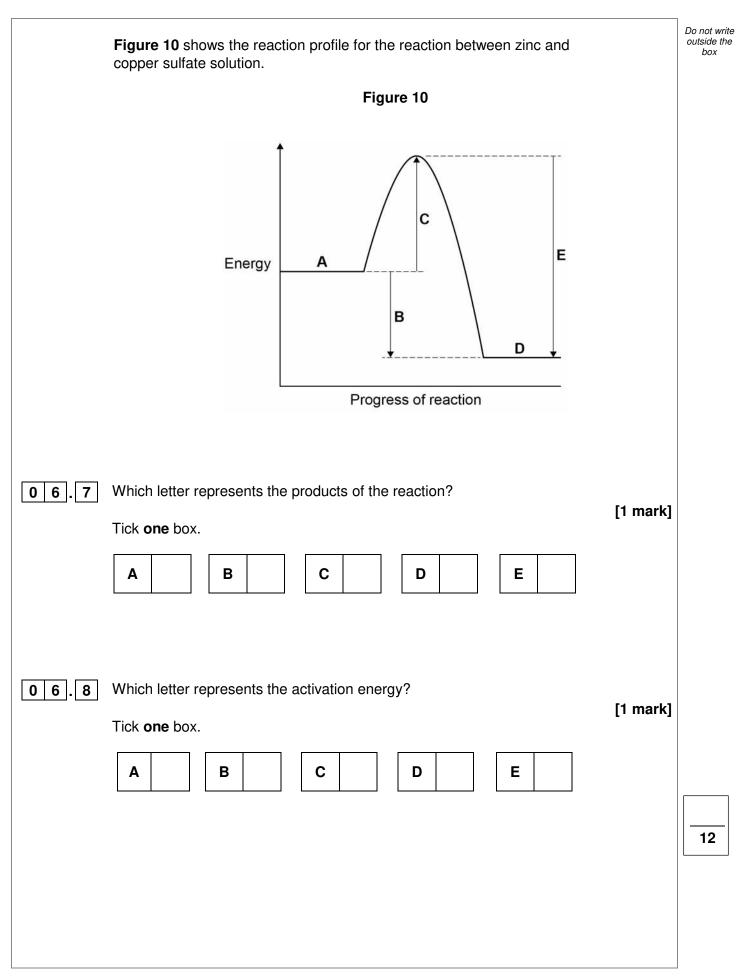
Do not write outside the Another student repeated the investigation using magnesium carbonate instead of box copper carbonate. The word equation for the reaction is: magnesium carbonate \rightarrow magnesium oxide + carbon dioxide Figure 8 shows the results of the investigation. Figure 8 6 × 5 4 × Mass of magnesium oxide in g 3 × 2 × 1 0 2 Ó 4 6 8 10 12 Mass of magnesium carbonate in g



0 5.6	Draw a line of best fit on Figure 8. [1 mark]	Do not write outside the box
0 5.7	Determine the mass of magnesium oxide produced by 8.4 g of magnesium carbonate.	
	Use Figure 8. [1 mark]	
	Mass =g	
0 5.8	Calculate the mass of magnesium oxide produced when 168 g of magnesium carbonate is heated.	
	Use your answer to Question 05.7 [2 marks]	
	Mass of magnesium oxide produced = g	
	Turn over for the next question	10
	Turn over ►	



0 6	A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.					write e the x
	This is	the method used.				
	1. Me	easure 50 cm ³ of the copper s	sulfate solution into a p	oolystyrene cup.		
	2. Re	ecord the starting temperature	of the copper sulfate	solution.		
	3. Ad	d the metal and stir the solut	on.			
	4. Re	cord the highest temperature	the mixture reaches.			
	5. Ca	Iculate the temperature incre	ase for the reaction.			
	6. Re	peat steps 1-5 with different	metals.			
06.1		one line from each type of va vestigation.	riable to the name of t		marks]	
		Type of variable	Nam	e of variable in the investigation		
			Conce	entration of solution		
			Pa	ticle size of solid		
		Dependent variable				
			Ten	nperature change		
		Independent variable		Type of metal		
			Va	lume of solution		



0 6.4	The student concluded that the reactions between the metals and copper sulfate solution are endothermic.	Do not write outside the box
	Give one reason why this conclusion is not correct. [1 mark]	
06.5	The temperature increase depends on the reactivity of the metal.	
	Write the metals magnesium, nickel and zinc in order of reactivity.	
	Use Table 5. [1 mark]	
	Most reactive	
	Least reactive	
06.6	Y is an unknown metal. Describe a method to find the position of Y in the reactivity series in Question 06.5 [3 marks]	

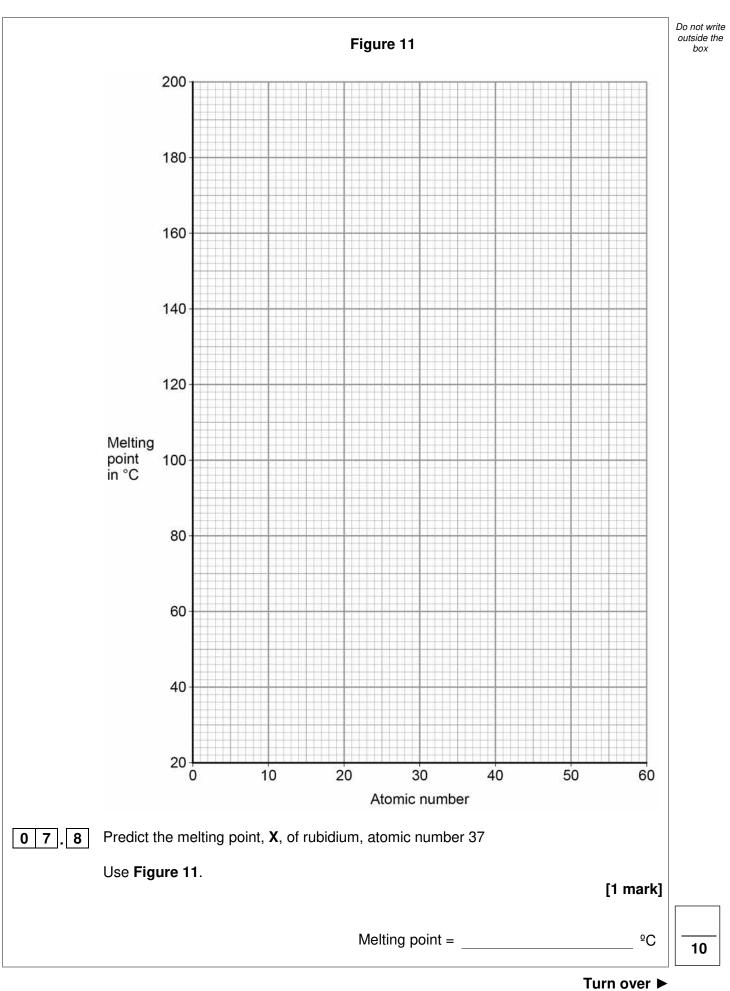
0 7	This question is about elements in Group 1.	Do not write outside the box
	A teacher burns sodium in oxygen.	
0 7.1	Complete the word equation for the reaction. [1 mark]	
	sodium + oxygen →	
0 7.2	What is the name of this type of reaction? [1 mark] Tick one box.	
	Decomposition	
	Electrolysis	
	Oxidation	
	Precipitation	
0 7.3	The teacher dissolves the product of the reaction in water and adds universal indicator.	
	The universal indicator turns purple.	
	What is the pH value of the solution?	
	Tick one box. [1 mark]	
	1 4 7 13	

0 7.4	The solution contains a substance with the formula NaOH	Do not write outside the box
	Give the name of the substance. [1 mark]	
	[· · · · · · · · · · · · · · · · · · ·	
0 7.5	All alkalis contain the same ion.	
	What is the formula of this ion? [1 mark]	
	Tick one box.	
	H ⁺	
	Na⁺	
	OH⁻	
	O ²⁻	
0 7.6	A solution of NaOH had a concentration of 40 g/dm ³	
	What mass of NaOH would there be in 250 cm ³ of the solution? [2 marks]	
	Mass = g	

0 7.7

The melting points of the elements in Group 1 show a trend.

Table 6 shows the atomic numbers and melting points of the Group 1 elements.

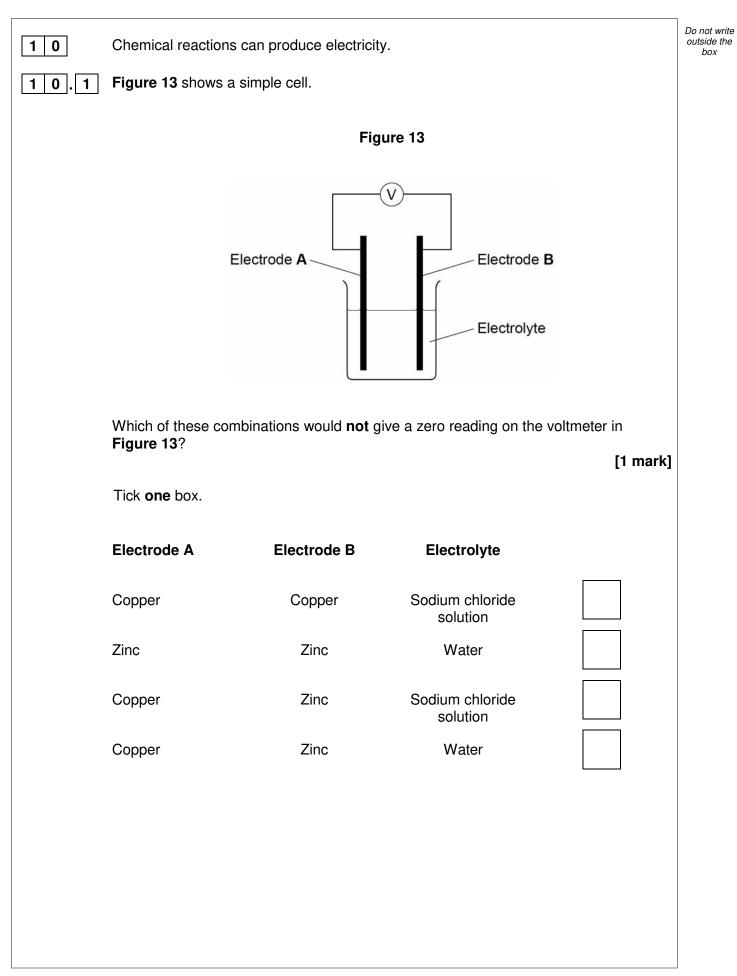

Table 6

Element	Atomic number	Melting point in °C
Lithium	3	181
Sodium	11	98
Potassium	19	63
Rubidium	37	x
Caesium	55	29

Plot the data from Table 6 on Figure 11.

[2 marks]

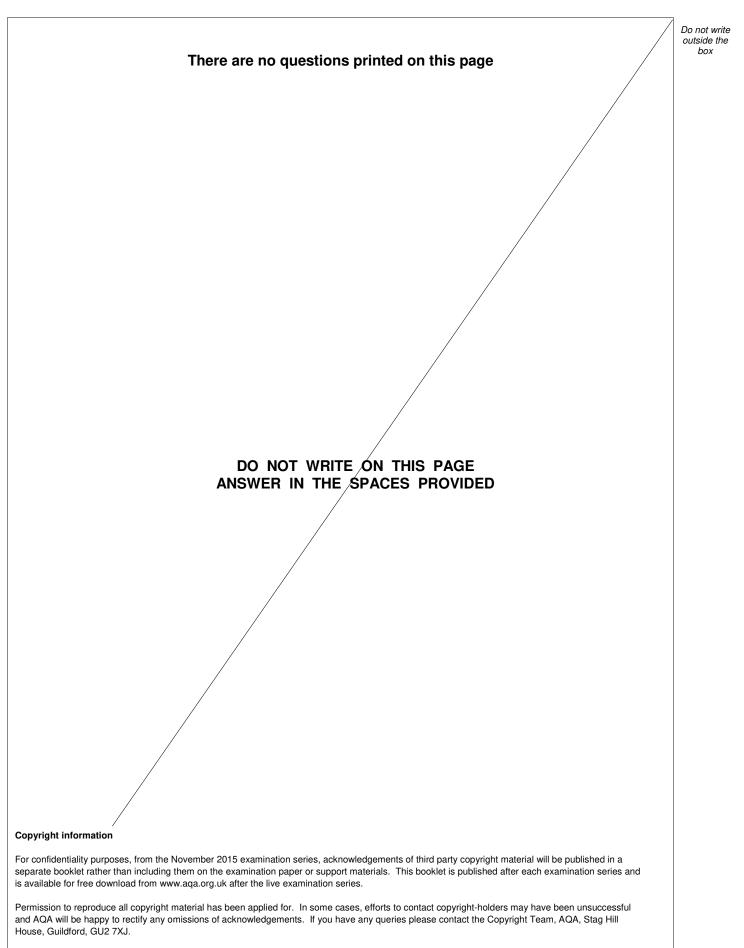
		-
08	Soluble salts are formed by reacting metal oxides with acids.	Do not wri outside th box
08.1	Give one other type of substance that can react with an acid to form a soluble salt. [1 mark]	
08.2	Calcium nitrate contains the ions Ca^{2+} and NO_3^-	
	Give the formula of calcium nitrate.	
	[1 mark]	
08.3	Describe a method to make pure, dry crystals of magnesium sulfate from a metal oxide and a dilute acid.	
	[6 marks]	



09	This question is about metals and metal compounds.	Do not write outside the box
09.1	Iron pyrites is an ionic compound.	
	Figure 12 shows a structure for iron pyrites.	
	Figure 12 Image: provide the formula of iron pyrites. Use Figure 12.	
09.2	An atom of iron is represented as ${}^{56}_{26}$ Fe Give the number of protons, neutrons and electrons in this atom of iron. [3 marks] Number of protons Number of neutrons Number of electrons	
09.3	Iron is a transition metal. Sodium is a Group 1 metal. Give two differences between the properties of iron and sodium. [2 marks]	
	2	

	Nickel is extracted from nickel oxide by reduction with carbon.	
09.4	Explain why carbon can be used to extract nickel from nickel oxide.	
		[2 marks]
0 9.5	An equation for the reaction is:	
0 9 . 5	NiO + C \rightarrow Ni + CO	
	Calculate the percentage atom economy for the reaction to produce nickel.	
	Relative atomic masses (A_r): C = 12 Ni = 59	
	Relative formula mass (M_r): NiO = 75	
	Give your answer to 3 significant figures.	[3 marks]
	Percentage atom economy =	%
	Т	urn over ►

	Question 10 continues on the next page	
10.3	Why can alkaline batteries not be recharged? [1 mark]	
10.2	Why do alkaline batteries eventually stop working? [1 mark]	
	Alkaline batteries are non-rechargeable.	Do not write outside the box



	Hydrogen fuel cells and rechargea electric cars.	able lithium-ion batteries	can be used to power
10.4	Complete the balanced equation f	or the overall reaction ir	n a hydrogen fuel cell. [2 marks]
	H ₂ +	→	H ₂ O
1 0.5	Table 7 shows data about differer	nt ways to power electric	cars.
		Table 7	
		Hydrogen fuel cell	Rechargeable lithium-ion battery
	Time taken to refuel or recharge in minutes	5	30
	Distance travelled before refuelling or recharging in miles	Up to 415	Up to 240
	Distance travelled per unit of energy in km	22	66
	Cost of refuelling or recharging in \mathfrak{L}	50	3
	Minimum cost of car in £	60 000	18 000
	Evaluate the use of hydrogen fuel batteries to power electric cars. Use Table 7 and your own knowle		
			[6 marks]

3 8

	Do not write outside the box
	DOX
·	
	11
END OF QUESTIONS	

Copyright © 2018 AQA and its licensors. All rights reserved.

