

AS Chemistry (7404/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015 v0.5

Session

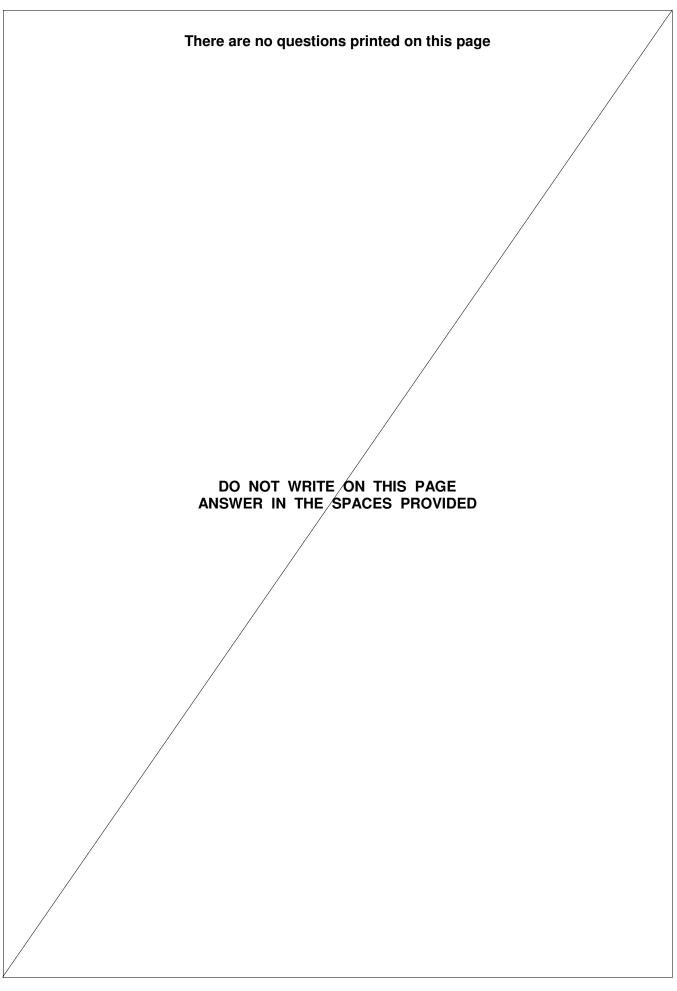
1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.

Instructions


- Answer **all** questions.
- Show all your working.

Information

• The maximum mark for this paper is 80.

Please write cle	early, in	block	cap	oita	ls.												
Centre number]	С	and	idat	e ni	umb	er							
Surname]
Forename(s)]
Candidate sign	ature _																

7404/1

	Section A
	Answer all questions in this section.
1	This question is about the elements in Group 2 and their compounds.
01.1	Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]
01.2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]
01.3	State the role of water in the reaction with calcium. [1 mark]
01.4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]
01.5	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks]
	Explanation

02.1		of sulfur consisting of three iso ves the relative abundance of				f 32.16
		Table 1				
		Mass number of isotope	32	33		
		Relative abundance / %	91.0	1.8		
	number of	formation to determine the rel the third isotope. answer to the appropriate nun				ss [4 marks]
			Mass nu	mber =		
02.2	Describe h	now ions are formed in a time o	of flight (TC	DF) mass s	pectrometer.	[2 marks]
						_

2.3	A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances.
	Explain why it is necessary to ionise molecules when measuring their mass in a TOF mass spectrometer.
	[2 mark
	Turn over for the next question

Typesetter code

	acts violently with fluorine act) + $4F_2(g) \longrightarrow CF_4(g)$ -				
	bond enthalpies are given in		<u> </u>		
Some mean	Table 3				
					1
Bond	l	C–H	C–F	H–F	
Mear	h bond enthalpy / kJ mol ⁻¹	412	484	562	
weak F–F b		·	-		
weak F–F b		·	-		
weak F–F b	ond .	·	-		e data.
weak F–F b	ond .	·	-		e data.
weak F–F b	ond .	·	-		e data.
weak F–F b	ond .	·	-		e data.
weak F–F b	ond .	·	-		e data.

Turn over for the next question

4	Colourless solutions of $X(aq)$ and $Y(aq)$ react to form an orange solution of $Z(ac)$ according to the following equation.	q)
	$\mathbf{X}(aq) + 2\mathbf{Y}(aq) \rightleftharpoons \mathbf{Z}(aq) \Delta H = -20 \text{ kJ mol}^{-1}$	
04.1	A student added a solution containing 0.50 mol of X (aq) to a solution containing 0.50 mol of Y (aq) and shook the mixture. After 30 seconds, there was no further change in colour. The amount of Z (aq) at equilibrium was 0.20 mol. Deduce the amounts of X (aq) and Y (aq) at equilibrium. [2	marks]
04.2	Amount of X (aq) = ^{mol} Amount of Y (aq) = On the grid below, draw a graph to show how the amount of Z (aq) changed from	mol
	time of initial mixing until 60 seconds had elapsed.	marks]

Typesetter code

04.3	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: $X(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } Z(aq) = 0.35 \text{ mol dm}^{-3}$. For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^{6}$. Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures. [3]	marks]
	[Y] =n	nol dm ⁻³
04.4	The student added a few drops of $\mathbf{Y}(aq)$ to the equilibrium mixture of $\mathbf{X}(aq)$, $\mathbf{Y}(aq)$ Z (aq) in Question 4.3 .	aq) and
	Suggest how the colour of the mixture changed. Give a reason for your answe	r. [marks]
	Colour change	
	Reason	
04.5	The student warmed the equilibrium mixture from Question 4.3 . Predict the colour change, if any, when the equilibrium mixture was warmed.	1 mark]

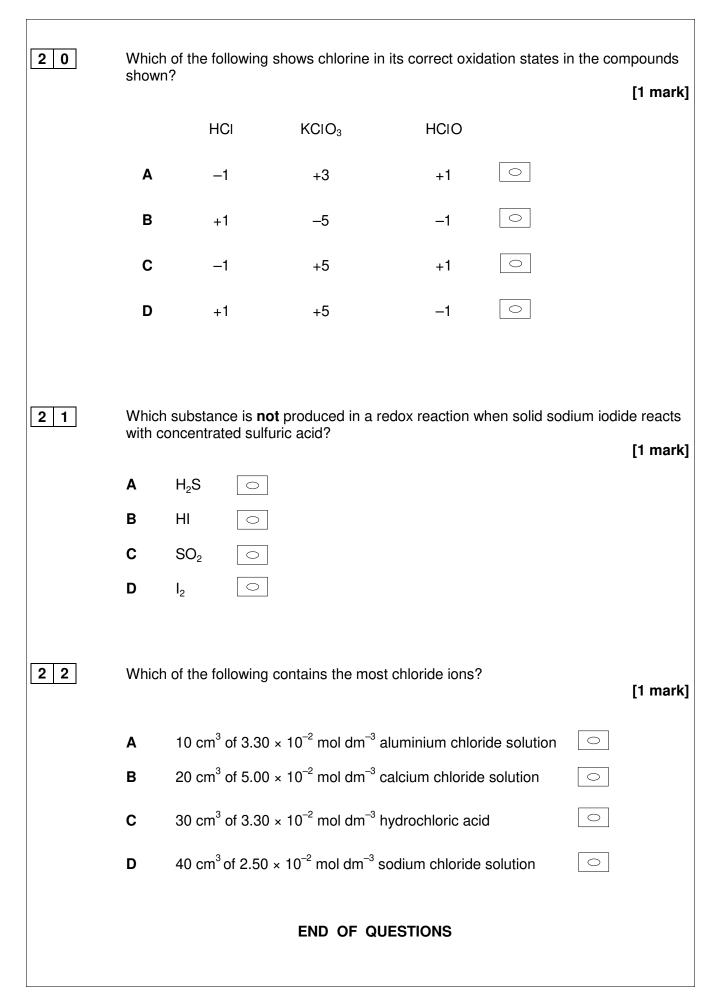
5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 . 1	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions
	react differently from chloride ions. [3 marks]
	Equation
	Explanation
05.2	A colourless solution contains a mixture of sodium chloride and sodium bromide.
	Using aqueous silver nitrate and any other reagents of your choice, develop a procedure to prepare a pure sample of silver bromide from this mixture.
	Explain each step in the procedure and illustrate your explanations with equations, where appropriate. [6 marks]
	[o

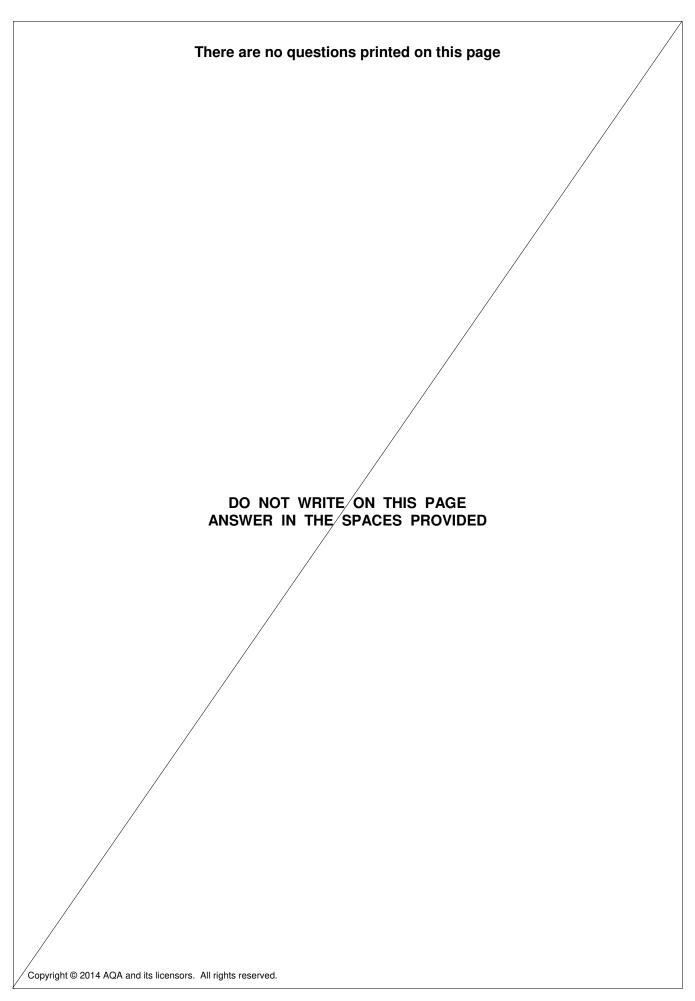
Typesetter code

Write an ionic equation for the reaction between chlorine and cold dilute sodium hydroxide solution. Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
Turn over for the next question

6	This question is about reactions of calcium compounds.
06.1	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCI \longrightarrow CaCI_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an experiment to calculate accurately the relative formula mass of the solid using this method. [8 marks]

06.2	A 3.56 g sample of calcium chloride was dissolved in water and reacted with an excess of sulfuric acid to form a precipitate of calcium sulfate.	
	The percentage yield of calcium sulfate was 83.4%.	
	Calculate the mass of calcium sulfate formed. Give your answer to an appropriate number of significant figures. [3 mag	arks]
	Mass of calcium sulfate formed =	g
	Turn over for the next question	


7	A sample of pure $Mg(NO_3)_2$ was decomposed by heating as shown in the equation below.	
	$2Mg(NO_3)_2(s) \longrightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$	
0 7 . 1	A 3.74 × 10^{-2} g sample of Mg(NO ₃) ₂ was completely decomposed by heating.	
	Calculate the total volume, in cm ³ , of gas produced at 60.0 °C and 100 kPa. Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [5 mark]	(s]
	Total volume of gas =	cm ³
07.2	The mass of MgO obtained in this experiment is slightly less than that expected from the mass of $Mg(NO_3)_2$ used. Suggest one practical reason for this. [1 matrix]	


			Section B				
			Answer all questions in this section.				
Only one answer per question is allowed.							
			ly fill in the circle alongside the appropriate answer.				
CORRECT ME							
			answer you must cross out your original answer as shown.				
If you wisl		urn to an a	inswer previously crossed out, ring the answer you now wish to se	lect			
	\rightarrow						
0 8	Whic	ch of these	e atoms has the largest atomic radius? [1]	mark]			
	Α	Ar	\bigcirc				
	в	CI	\bigcirc				
	С	Mg	\bigcirc				
	D	Na	\bigcirc				
09	Whic	ch of these	e species is the best reducing agent?	morki			
	Α	CI		mark]			
	B	Cl ₂ Cl ⁻					
	C						
		I₂ I⁻					
	D	I					

10	Which of these pieces of apparatus has the lowest percentage uncertainty in the measurement shown? [1 mark]								
	Α	Volume of 25 cm with an uncertain							
	В	Volume of 25 cm cylinder with an u		ured with a measu nty of ±0.5 cm ³ .	ring	0			
	С		Mass of 0.150 g measured with a balance of the temperature of temperature						
	D	Temperature cha with a thermome							
1 1	acid. with a	The student is ask concentration of 5	ed to de .00 × 10) cm ³ sample of 1. evise a method to p) ⁻⁴ mol dm ⁻³ by dilu ume of water that s	prepare uting the	a hydrochlo sample wit	ric acid solution		
	Α	45.0 cm ³					ניוומיאן		
	B	95.0 cm ³							
	C	100 cm ³							
	D	995 cm ³		0					
12	Which	of these species h	nas a tri	gonal planar struct	ure?		[1 mark]		
	Α	PH_3	\bigcirc						
	В	BCI ₃	\bigcirc						
	С	H_3O^+	\bigcirc						
	D	CH_3^-	\bigcirc						

1 3	Use y	our understa	anding of in	termolecular	forces to pred	lict which of t	hese compounds
		ne highest bo			-		[1 mark]
	Α	HF		>			
	в	HCI		\supset			
	С	HBr		\geq			
	D	ні		>			
1 4			nd is formed	between N	and B when a	molecule of	NH_3 reacts with a
	molec	cule of BF ₃ ?					[1 mark]
	Α	Ionic.		\bigcirc			
	В	Covalent.		0			
	С	Co-ordinat	te.	0			
	D	Van der W	laals	\bigcirc			
1 5	Which	n of these ato	oms has the	e highest ele	ctronegativity)	[1 mark]
	Α	Na	\bigcirc				ניוומיאן
	B						
	C	Mg Cl					
	D	Ar					
	U	Ai					
1 6	Which	n of these ato	oms has the	e smallest nu	mber of neutr	ons?	[1 mark]
	А	³ Н	\bigcirc				
	В	⁴ He					
	C	⁵He					
	D	⁴ Li					
	-						

1 7	Which	[1 mark]	
	Α	HF O	
	В	NH ₃	
	С	CH₃COOH ◯	
	D	CHF ₃	
1 8	What i	s the formula of calcium nitrate(V)?	[1 mark]
	Α	CaNO ₃	
	В	$Ca(NO_3)_2$	
	С		
	D	$Ca(NO_2)_2$	
19	Which A B C D	of these elements has the highest second ionisation energy? Mg O Ne O Ar O	[1 mark]

