

A-level Chemistry (7405/3)

Paper 3

Specimen 2015 v0.5

Session

2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer **all** questions.
- Show all your working.

Information

• The maximum mark for this paper is 90.

Please write clearly, in block cap	pitals, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

Section A						
	Answer all questions in this section.					
1	Ethanol can be oxidised by acidified potassium dichromate(VI) to ethanoic acid in a					
	two-step process.					
	ethanol \longrightarrow ethanal \longrightarrow ethanoic acid					
01.1	In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux.					
	Describe what happens when a reaction mixture is refluxed and why it is necessary, in this case, for complete oxidation to ethanoic acid.					
	[3 marks]					
0 1 . 2	Write a half-equation for the overall oxidation of ethanol into ethanoic acid. [1 mark]					

Typesetter code

	e boiling points of the o ble 1 .	rganic compound	s in a reaction mix	xture are shown ir	1					
		Tab	le 1							
	Compound	ethanol	ethanal	ethanoic acid						
	Boiling point / °C7821118									
of t wo	e these data to describe hese three compounds uld use and how you we paratus can be either a	. Include in your a ould minimise the	answer a descript loss of ethanal.	ion of the apparat Your description c ketch.	us you					
	Que	estion 1 continue	es on the next pa	age						

01.4	Use your knowledge of structure and bonding to explain why it is possible to separate ethanal in this way. [2 marks]
0 1 . 5	A student obtained a sample of a liquid using the apparatus in Question 1.3 .
	Describe how the student could use chemical tests to confirm that the liquid contained ethanal and did not contain ethanoic acid. [5 marks]

	A student obtained the titration results given in Table 2 .									
			Table 2							
			[]]			
			Rough	1	2	3				
	Final bure	ette reading / cm ³	4.60	8.65	12.85	16.80				
	Initial bur	rette reading / cm ³	0.10	4.65	8.65	12.85				
	Titre / cm	3								
02.	2 Comple	ete Table 2 .					[1 mark]			
02.	3 Calcula	te the mean titre and	justify your	choice of ti	tres.		[2 marks]			
	Calcula	tion								
							cm ³			
	Justifica	tion								
02.	4 The pH	ranges of three indic	ators are sh	iown in Tab	le 3.					
			Tab	ole 3						
		Indicator		pH range)					
Bromocresol green 3.8–5.4										
	Bromothymol blue 6.0–7.6									
			Thymol blue 8.0–9.6							
		Thymol blue		8.0–9.6						
		Thymol blue from Table 3 a suitab hydroxide.	le indicator		ion of ethan	 oic acid with				
		rom Table 3 a suitab	le indicator		ion of ethan	oic acid with	ו [1 mark]			

02.5	The uncertainty in the mean titre for this experiment is ± 0.15 cm ³ .
	Calculate the percentage uncertainty in this mean titre. [1 mark]
	Percentage uncertainty = %
02.6	Suggest how, using the same mass of ethanoic acid, the experiment could be improved to reduce the percentage uncertainty.
	[2 marks]
	Turn over for the next question

3	A peptide is hydrolysed to form a solution containing a mixture of amino acids. This mixture is then analysed by silica gel thin-layer chromatography (TLC) using a toxic solvent. The individual amino acids are identified from their R_f values.
	Part of the practical procedure is given below.
	 Wearing plastic gloves to hold a TLC plate, draw a pencil line 1.5 cm from the bottom of the plate. Use a capillary tube to apply a very small drop of the solution of amino acids to the mid-point of the pencil line. Allow the spot to dry completely. In the developing tank, add the developing solvent to a depth of not more than 1 cm. Place your TLC plate in the developing tank. Allow the developing solvent to rise up the plate to the top. Remove the plate and quickly mark the position of the solvent front with a pencil. Allow the plate to dry in a fume cupboard.
03.1	Parts of the procedure are in bold text.
	For each of these parts, consider whether it is essential and justify your answer. [4 marks]

Typesetter code

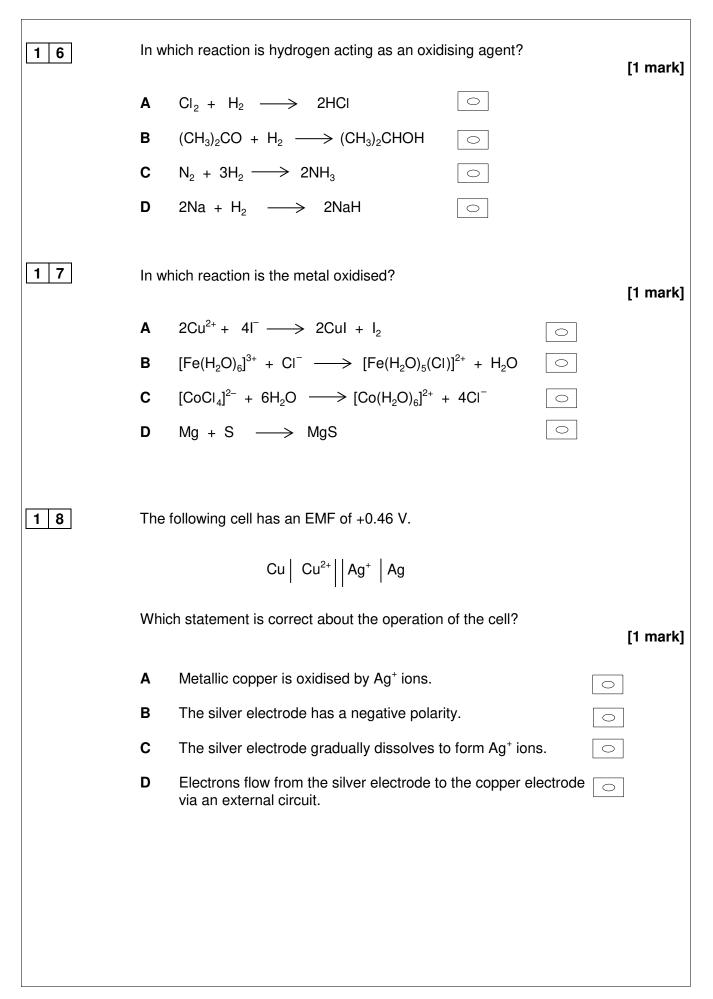
03.2	Outline the steps needed to locate the positions of the amino acids on the T and to determine their $R_{\rm f}$ values.	LC plate [4 marks]
03.3	Explain why different amino acids have different $R_{\rm f}$ values.	[2 marks]

4 Ethanedioic acid is a weak acid. Ethanedioic acid acts, initially, as a monoprotic acid. юн 📛 и Ο •0⁻ + H⁺ НO 04.1 Use the concept of electronegativity to justify why the acid strengths of ethanedioic acid and ethanoic acid are different. [6 marks]

Question 4 continues on the next page	
pH =	
Give your answer to the appropriate number of significant figures.	[5 marks
Calculate a value for the pH of the buffer solution.	
The dissociation constant K_a for ethanedioic acid is 5.89 × 10 ⁻² mol dm ⁻³ .	
$H_2C_2O_4(aq) + OH^-(aq) \longrightarrow HC_2O_4^-(aq) + H_2O(l)$	
Assume that the sodium hydroxide reacts as shown in the following equation in this buffer solution, the ethanedioic acid behaves as a monoprotic acid.	in and tha
containing 1.00×10^{-1} mol of ethanedioic acid (H ₂ C ₂ O ₄).	n and that
containing 1.00 x 10^{-1} mol of ethanedioic acid (H ₂ C ₂ O ₄).	

04.3] In a titration, the end point was reached when 25.0 cm ³ of an acidified solution containing ethanedioic acid reacted with 20.20 cm ³ of 2.00×10^{-2} mol dm ⁻³ potassium manganate(VII) solution.					
	Deduce an equation for the reaction that occurs and use it to calculate the ori concentration of the ethanedioic acid solution.	ginal [4 marks]				
	Equation					
	Original concentration =	mol dm ⁻³				

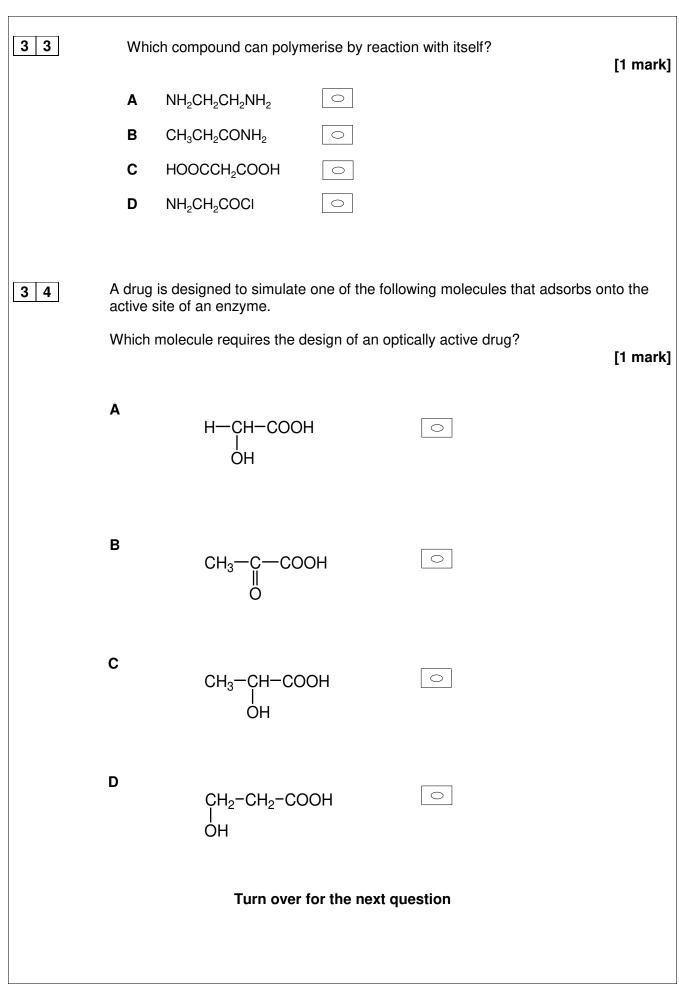
5	A sample of ethanedioic acid was treated with an excess of an unknown alcohol in the presence of a strong acid catalyst. The products of the reaction were separated and analysed in a time of flight (TOF) mass spectrometer. Two peaks were observed at $m/z = 104$ and 118.
0 5 . 1	Identify the species responsible for the two peaks. [2 marks]
0 5 . 2	Outline how the TOF mass spectrometer is able to separate these two species to give two peaks. [4 marks]


Section B								
Answer all questions in this section.								
Only one answe	er per questio	n is allow	ved.					
For each answe	er completely	fill in the	circle alongsid	e the	appropi	riate answe	r.	
CORRECT METHOD	• WRONG	METHODS	Ø ()	ϕ				
If you want to ch	nange your ar	nswer you	u must cross o	ut yo	ur origin	al answer a	as shown.]	\mathbf{X}
If you wish to re as shown.	turn to an ans	swer prev	viously crossed	d out,	ring the	answer yo	u now wish	to select
06 Wr	iich change re	equires th	ne largest amo	unt o	f energy	?		[1 mark]
A	He⁺(g)	→ I	He ²⁺ (g) + e ⁻		\bigcirc			
В	Li(g)	i	Li⁺(g) + e ⁻		\bigcirc			
с	Mg ⁺ (g)	\longrightarrow	Mg ²⁺ (g) + e ⁻		\bigcirc			
D	N(g)	→ I	N⁺(g) + e ⁻		\bigcirc			
07 As	ample of 2.18	B g of oxy	/gen gas has a	a volu	me of 18	870 cm³ at	a pressure	of 101 kPa.
Wh	at is the temp	berature of $B = 8$	of the gas? 3.31 J K ⁻¹ mol ⁻	1				
	gas constar	1 13 77 – C		•				[1 mark]
Α	167 K		0					
В	334 K		0					
С	668 K		0					
D	334 000	ĸ	0					

08	An ester is hydrolysed as shown by the following equation.						
	$RCOOR' + H_2O \longrightarrow RCOOH + R'OH$						
	What is the percentage yield of RCOOH when 0.50 g of RCOOH ($M_r = 100$) i	is					
	obtained from 1.0 g of RCOOR^{\prime} ($M_r = 150$)?	1 mark]					
	A 33%						
	B 50%						
	C 67%						
	D 75%						
09	0 9 A saturated aqueous solution of magnesium hydroxide contains 1.17×10^{-3} g of Mg(OH) ₂ in 100 cm ³ of solution. In this solution, the magnesium hydroxide is fully dissociated into ions.						
	What is the concentration of $Mg^{2+}(aq)$ ions in this solution?						
	[1 mark]						
	A $2.82 \times 10^{-2} \text{ mol dm}^{-3}$						
	B $2.01 \times 10^{-3} \text{ mol dm}^{-3}$						
	C $2.82 \times 10^{-3} \text{ mol dm}^{-3}$						
	D $2.01 \times 10^{-4} \text{ mol dm}^{-3}$						
	— – – –						
	Turn over for the next question						
1							

1 0	Th	ne rate equation for the hydrogenation of ethene				
		$C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$				
	is I	is Rate = $k[C_2H_4][H_2]$				
	At a fixed temperature, the reaction mixture is compressed to triple the original					
	pre	essure.				
	Wł	hat is the factor by which the rate of reaction changes?	[1 mark]			
	Α	6				
	в	9 💿				
	С	12 💿				
	D	27 💿				
	_					
1 1	When one mole of ammonia is heated to a given temperature, 50% of the compound dissociates and the following equilibrium is established.					
	$NH_3(g) \implies \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$					
	What is the total number of moles of gas present in this equilibrium mixture? [1 mark]					
	Α	1.5 💿				
	В	2.0 💿				
	С	2.5 💿				
	D	3.0 💿				
12	Wł	hich change would alter the value of the equilibrium constant ($\mathcal{K}_{ extsf{p}}$) for th	is reaction?			
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$					
			[1 mark]			
	A	Increasing the total pressure of the system.				
	В	Increasing the concentration of sulfur trioxide.				
	С	C Increasing the concentration of sulfur dioxide.				
	D	Increasing the temperature.				

Typesetter code


1 3	What is the pH of a 0.020 mol dm ⁻³ solution of a diprotic acid which is completely dissociated?			
	[1 mark]			
	A 1.00 O			
	B 1.40 \bigcirc			
	C 1.70 \bigcirc			
	D 4.00			
14	The acid dissociation constant, K_a , of a weak acid HA has the value 2.56 × 10 ⁻⁴ mol dm ⁻³			
	What is the pH of a 4.25 \times 10 ⁻³ mol dm ⁻³ solution of HA? [1 mark]			
	A 5.96 •			
	B 3.59 •			
	C 2.98			
	D 2.37			
1 5	Magnesium reacts with hydrochloric acid according to the following equation.			
	Mg + 2HCI \longrightarrow MgCl ₂ + H ₂			
	A student calculated the minimum volume of 2.56 mol dm ^{-3} hydrochloric acid required to react with an excess of magnesium to form 5.46 g of magnesium chloride ($M_r = 95.3$).			
	Which of the following uses the correct standard form and the appropriate number of significant figures to give the correct result of the calculation?			
	of significant figures to give the correct result of the calculation? [1 mark]			
	A 4.476 × 10^{-2} dm ³			
	B $4.48 \times 10^{-2} \text{ dm}^3$			
	C $4.50 \times 10^{-2} \text{ dm}^3$			
	D $44.8 \times 10^{-3} \text{ dm}^3$			

22		t is the final species produced when an excess of aqueous ammonia is ueous aluminium chloride?	added		
	[1 m				
	Α	[AI(NH ₃) ₆] ³⁺			
	В	$[AI(OH)_3(H_2O)_3] \bigcirc$			
	С	$[AI(OH)_4(H_2O)_2]^{-} \bigcirc$			
	D	$[AI(OH)(H_2O)_5]^{2+}$			
2 3	The f	ollowing equation represents the oxidation of vanadium(IV) ions by ganate(VII) ions in acid solution.			
	$5V^{4+} + MnO_4^- + 8H^+ \longrightarrow 5V^{5+} + Mn^{2+} + 4H_2O$				
		t volume of 0.020 mol dm ⁻³ KMnO₄ solution is required to oxidise comp ion containing 0.010 mol of vanadium(IV) ions?	oletely a		
			[1 mark]		
	Α	10 cm ³			
	В	25 cm ³			
	С	50 cm ³			
	D	100 cm ³			
24	How A C D	many isomers have the molecular formula C ₅ H ₁₂ ? 2 0 3 0 4 0 5 0	[1 mark]		

2 5	Which molecule is not produced when ethane reacts with bromine in the presence of ultraviolet light?				
	or un				
	Α	C ₂ H ₄ Br ₂			
	в	HBr O			
	с	H_2			
	D	C_4H_{10}			
2 6	Llaw	many structural isomera have the malecular formula C LL Dr2			
20	ΠΟW	many structural isomers have the molecular formula $C_4 H_9 Br?$	[1	mark]	
	Α	2 💿			
	в	3 💿			
	с	4 💿			
	D	5 0			
2 7	What (D is	t is the major product of the reaction between but-1-ene and DBr? deuterium and represents ² H)			
			[1	mark]	
	Α	$CH_2DCH_2CH_2Br$			
	В	CH ₂ DCH ₂ CHBrCH ₃			
	С	CH ₃ CH ₂ CHBrCH ₂ D			
	D	$CH_3CH_2CHDCH_2Br$			
28	Why	are fluoroalkanes unreactive?	[1	mark]	
	Α	Fluorine is highly electronegative.	-	-	
	в	The F^- ion is very stable.			
	C	They are polar molecules.			
	D	The C–F bond is very strong.			
	J				

29	Which alcohol could not be produced by the reduction of an aldehyde or a ketone? [1 mark]			
	Α	2-methylbutan-1-ol		
	В	2-methylbutan-2-ol		
	С	3-methylbutan-1-ol		
	D	3-methylbutan-2-ol		
30	Whic	ch compound forms optically active compounds on reduction?	[1 mark]	
	Α	$CH_3CH_2C(CH_3)=CHCH_3$		
	в	$CH_3CH_2C(CH_3)=CH_2$		
	С	CH ₃ COCH ₃		
	D	CH ₃ CH ₂ COCH ₃		
3 1	How A B C D	many secondary amines have the molecular formula $C_4H_{11}N$? 2 0 3 0 4 0 5 0	[1 mark]	
32	Whic A B C D	ch compound has the highest boiling point? C_2H_4 \bigcirc C_2H_6 \bigcirc CH_3NH_2 \bigcirc CH_3F \bigcirc	[1 mark]	
		•		

35	Which amine has only	three peaks in its proton NMR spectrum?	[1 mark]
F	Methylamine	\bigcirc	
E	3 Trimethylamine	\bigcirc	
C	Diethylamine	\bigcirc	
C	D Propylamine	\bigcirc	
		END OF QUESTIONS	

Copyright © 2014 AQA and its licensors. All rights reserved.