

A-level Chemistry (7405/2)

Paper 2: Organic and Physical Chemistry

Specimen 2015 v0.5

Session

2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

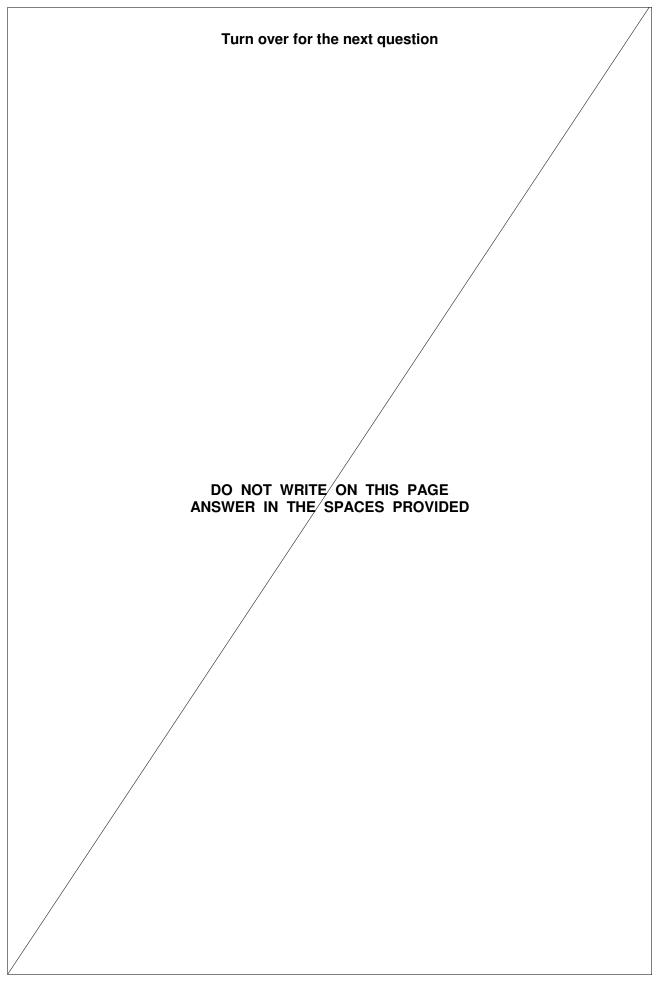
Instructions

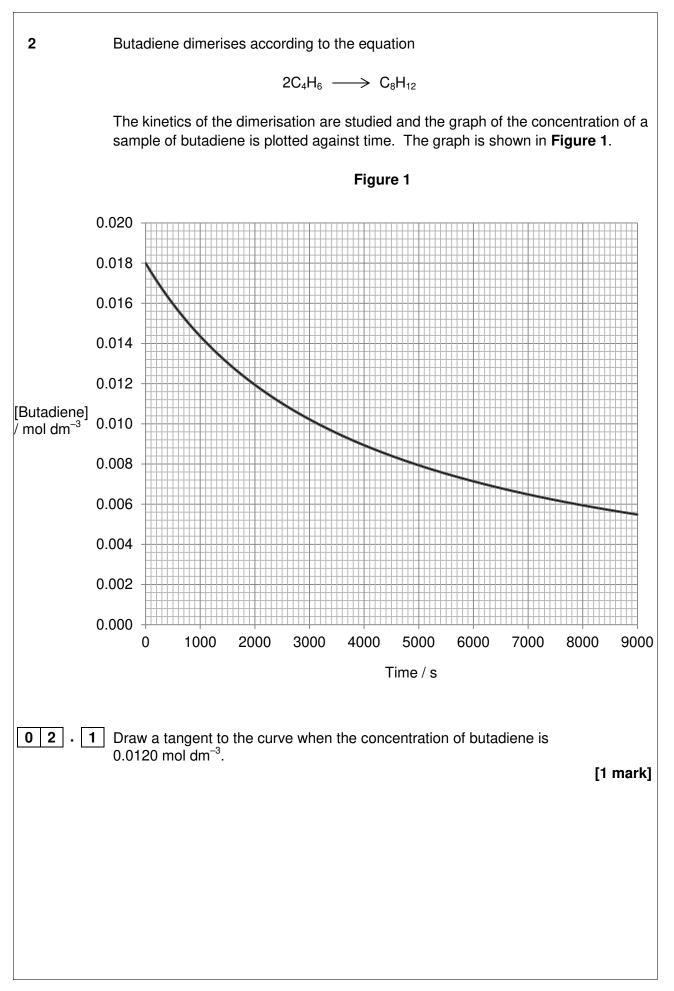
- Answer **all** questions.
- Show **all** your working.

Information

• The maximum mark for this paper is 105.

Please write clearly, in block capitals, to allow character computer recognition.				
Centre number		Candidate number		
Surname				
Forename(s)				
Candidate signa	ature			

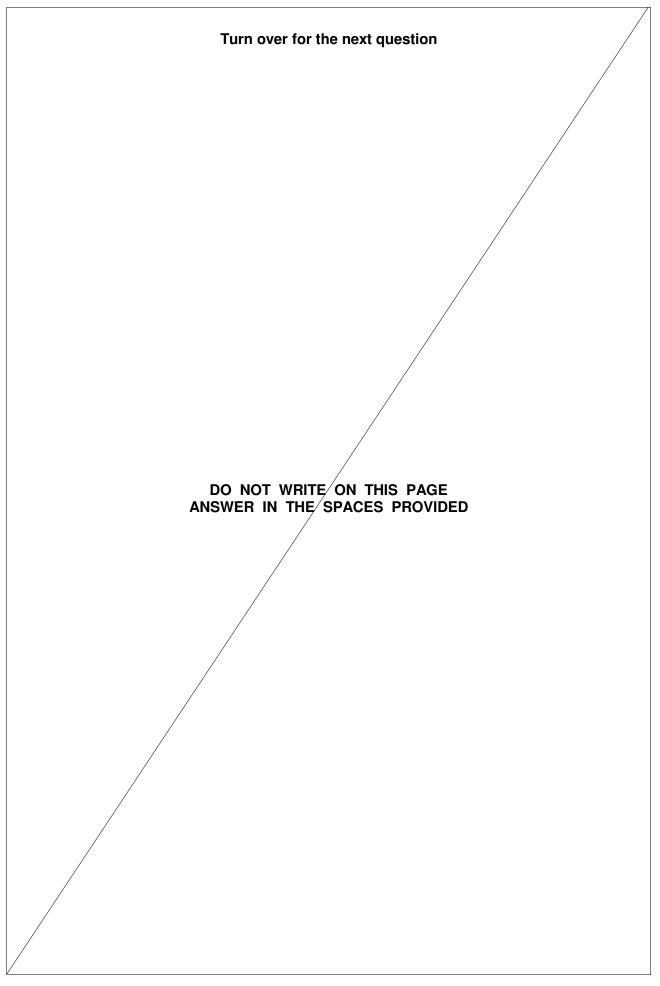

7405/2


	Answer all ques	stions.	
	on involves the use of kineti value for a rate constant.	c data to deduce the orde	er of a reaction
	Table 1 were obtained in atween compounds A and B		
	Ta	able 1	
Experime	nt Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s
1	0.12	0.26	2.10 × 10 ⁻⁴
2	0.36	0.26	1.89 × 10 ⁻³
			1.05 × 10
3 Show how t between A	0.72 these data can be used to d and B .	0.13 educe the rate expression	3.78 × 10 ^{−3}
Show how t	these data can be used to d	<u> </u>	3.78×10^{-3}
Show how 1	these data can be used to d	<u> </u>	3.78×10^{-3}
Show how 1	these data can be used to d	<u> </u>	3.78×10^{-3}
Show how t	these data can be used to d	<u> </u>	3.78×10^{-3}
Show how 1	these data can be used to d	<u> </u>	3.78×10^{-3}
Show how 1	these data can be used to d	<u> </u>	3.78×10^{-3}
Show how 1	these data can be used to d	<u> </u>	3.78×10^{-3}
Show how t	these data can be used to d	<u> </u>	3.78×10^{-3}
how how t	these data can be used to d	<u> </u>	3.78×10^{-3}

		ble 2 were obtained in tw ounds C and D at a cons	wo experiments on the ra stant temperature.	te of the reaction
	Table 2			
	Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
	4	1.9 × 10 ⁻²	3.5 × 10 ^{−2}	7.2 × 10 ⁻⁴
	5	3.6 × 10 ⁻²	5.4 × 10 ⁻²	To be calculated
01.2	Use the data f	ion for this reaction is rate = k[0] rom experiment 4 to calc Deduce the units of <i>k</i> .	C] ² [D] ulate a value for the rate	constant, <i>k</i> , at this [3 marks]
01.3		lue for the initial rate in e	Units = xperiment 5 .	[1 mark]
	G	Initial Question 1 continues or	rate = • the next page	mol dm ⁻³ s ⁻¹

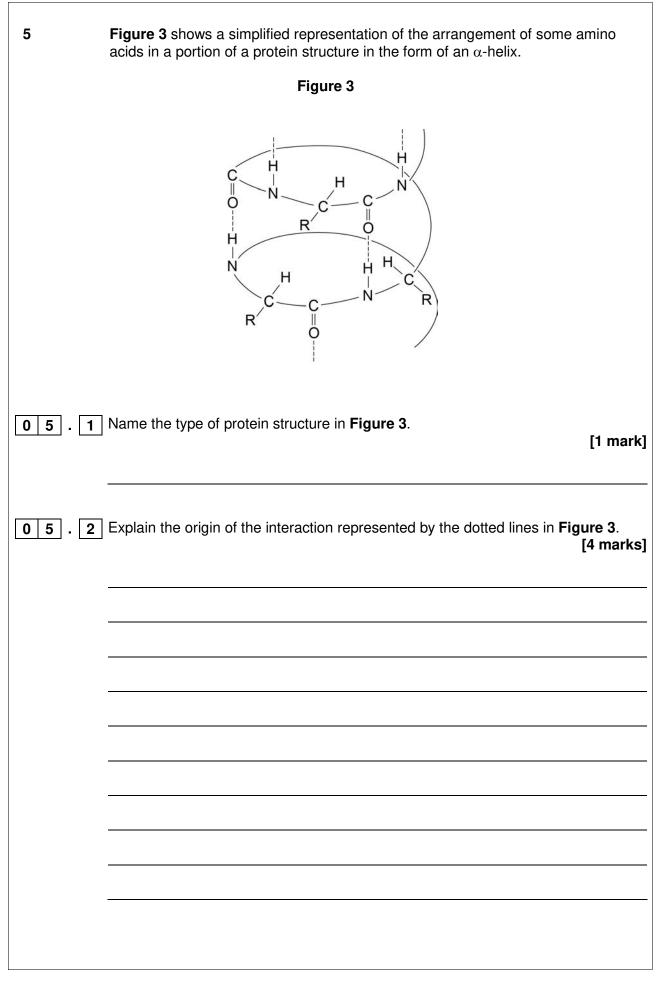
01.4	The rate equation for a reaction is	
	$rate = k[\mathbf{E}]$	
	Explain qualitatively why doubling the temperature has a much greater effect the rate of the reaction than doubling the concentration of E . [3 I	t on marks]
01.5	A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3$ at 300 K. Use the equation ln $k = \ln A - E_a/RT$ to calculate a value, in kJ mol ⁻¹ , for the activation energy of this reaction.	
	The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [2 I	marks]
	Activation energy =	

Typesetter code



The initial rate of reaction in this experiment has the value 4.57×10^{-6} mol dm ⁻³ s ⁻¹ .	
order of the reaction is 2 with respect to butadiene.	hat the [5 marks]
Turn over for the next question	
	Use this value, together with a rate obtained from your tangent, to justify t order of the reaction is 2 with respect to butadiene.

3		is the common name for the branched-chai car engines. The skeletal formula of isooc	
		Figure 2	
03.1	Give the IUPAC n	ame for isooctane.	[1 mark]
03.2	Deduce the numb	er of peaks in the ¹³ C NMR spectrum of isod	octane. [1 mark]
Only one a	nswer is allowed.		
		gside the appropriate answer.	
CORRECT METH		tπods I I I I I I I I I I I I I I I I I I I	er as shown.
	to return to an ansv	er previously crossed out, ring the answer	
	~~~		
	5	0	
	6	0	
	7	0	
	8	0	


_				
	03	3	Isooctane can be formed, together with propene and ethene, in a reaction one molecule of an alkane that contains 20 carbon atoms is cracked. Using molecular formulas, write an equation for this reaction.	in which [1 mark]
	03	4	How do the products of the reaction in Question <b>3.3</b> show that the reaction example of thermal cracking?	n is an [1 mark]
	03.	5		al [ <b>2 marks]</b>
			Number of monochloro isomersStructure	
	03	6	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
			Draw the <b>skeletal formula</b> of this monochloro compound.	[1 mark]
			Question 3 continues on the next page	

0 3 . 7 A sample of a monochlorooctane is obtained from a comet. The chlorine in t monochlorooctane contains the isotopes ³⁵ Cl and ³⁷ Cl in the ratio 1.5 : 1.0 Calculate the <i>M</i> _r of this monochlorooctane. [2 r	he narks]
<ul> <li>M_r =</li></ul>	ass. narks]
Molecular formula =	

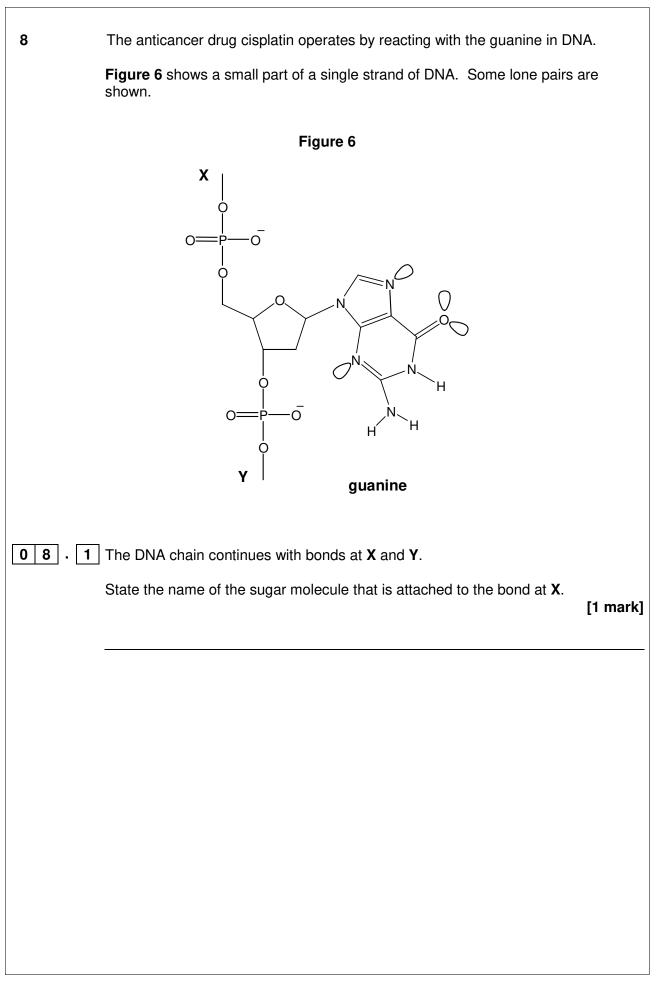


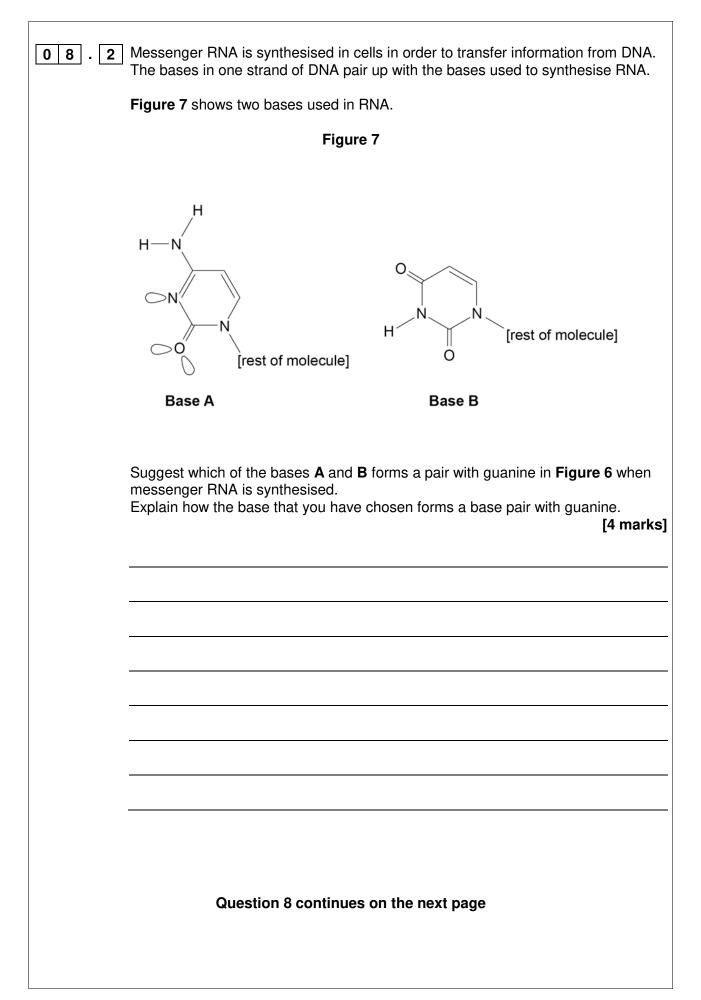
4	Alcohol <b>A</b> (CH ₃ ) ₂ CHCH(OH)CH ₃ undergoes reactions separately with acidified potassium dichromate(VI) and with concentrated sulfuric acid.	əd
04.1	Deduce the IUPAC name for alcohol <b>A</b> . [1	mark]
04.2	Draw the structure of the organic product, <b>B</b> , formed when <b>A</b> is oxidised in th reaction with acidified potassium dichromate(VI). [1	ne mark]
04.3	Two isomeric alkenes, <b>C</b> and <b>D</b> , are formed when <b>A</b> is dehydrated in the rea with concentrated sulfuric acid. Name the mechanism for this dehydration reaction.	ction mark]
04.4	Draw the structure of each isomer. [2 r Isomer C Isomer D	marks]

04.5	Name the type of structural isomerism shown by <b>C</b> and <b>D</b> .	[1 r	mark]
04.6	List alcohol <b>A</b> , product <b>B</b> and isomer <b>C</b> in order of increasing boiling point.		nark]
04.7	Draw the structure of the isomer of <b>A</b> that is <b>not</b> oxidised by acidified potassium dichromate(VI).	[1 r	nark]
04.8	Draw the structure of the isomer of <b>A</b> that <b>cannot</b> be dehydrated to form a by reaction with concentrated sulfuric acid.		
		[1 r	nark]
	Turn over for the next question		
	rum over for the next question		



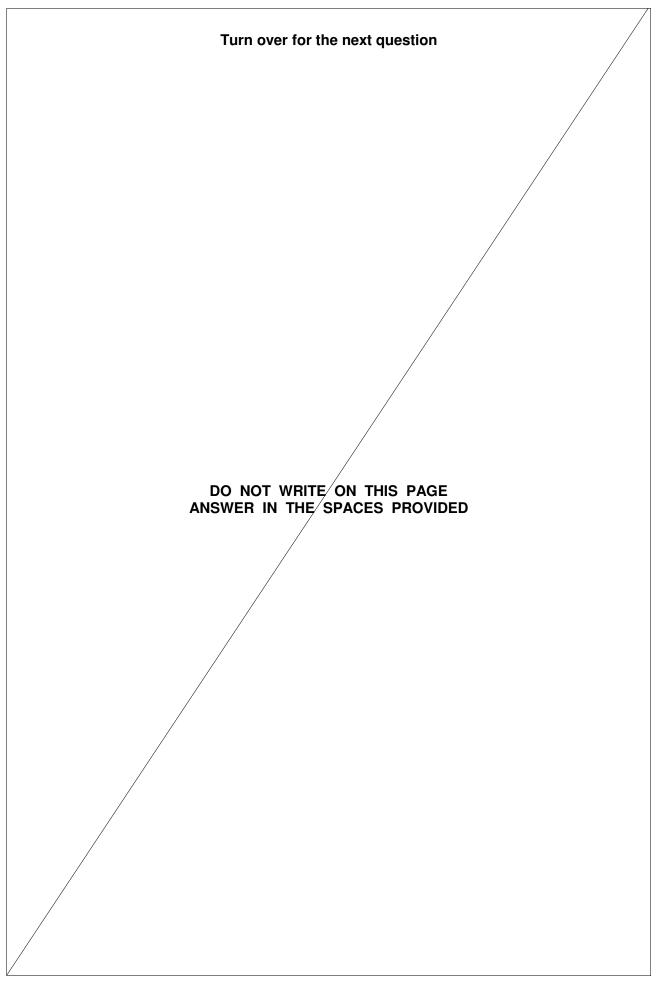
Typesetter code


6 The tripeptide shown in <b>Figure 4</b> is formed from the amino acids glycine, threonin and lysine.
Figure 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 6 . 1 Draw a separate circle around <b>each</b> of the asymmetric carbon atoms in the tripeptide in <b>Figure 4</b> . [1 mark]
0 6 . 2 Draw the zwitterion of glycine. [1 mark
0 6 . 3 Draw the structure of the species formed when glycine reacts with an excess of bromomethane. [1 mark
0 6 . 4 Deduce the IUPAC name of threonine. [1 mark
<b>06</b> . <b>5</b> Draw the structure of the species formed by lysine at low pH. <b>[1 mark</b>


Г

7	Repeating units of two polymers, <b>P</b> and <b>Q</b> , are shown in <b>Figure 5</b> .	
	Figure 5	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	P Q	
07.1	Draw the structure of the monomer used to form polymer <b>P</b> . Name the type of polymerisation involved. [2 marks	5]
	Monomer	
	Type of polymerisation	_
07.2	] Draw the structures of <b>two</b> compounds that react together to form polymer <b>Q</b> . [2 marks	5]
	Structure of compound 1	
	Structure of compound 2	

07.3	Suggest an environmental advantage of polymer <b>Q</b> over polymer <b>P</b> . Justify your answer.	
		[3 marks]
	Advantage	
	Justification	
	Turn over for the next question	

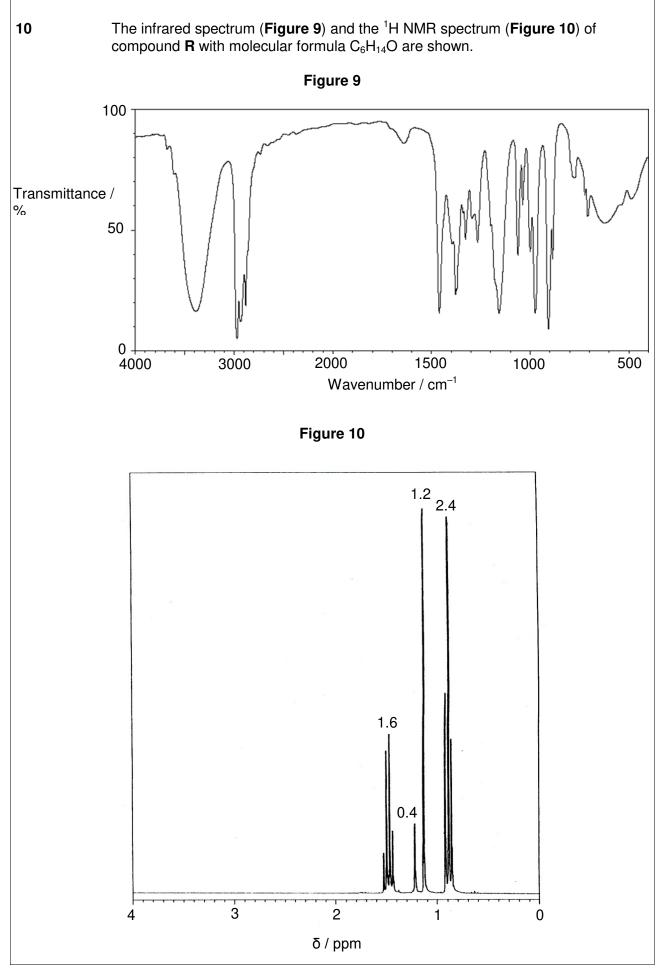

Γ






wit	splatin works because one of the atoms on guanine can form a co-ordinate bond h platinum, replacing one of the ammonia or chloride ligands. Another atom on other guanine can also form a co-ordinate bond with the same platinum by placing another ligand.
	n <b>Figure 6,</b> draw a ring round an atom in guanine that is likely to bond platinum. [1 mark]
	adverse effect of cisplatin is that it also prevents normal healthy cells from plicating.
	iggest <b>one</b> way in which cisplatin can be administered so that this side effect is nimised. [1 mark]
_	

Γ

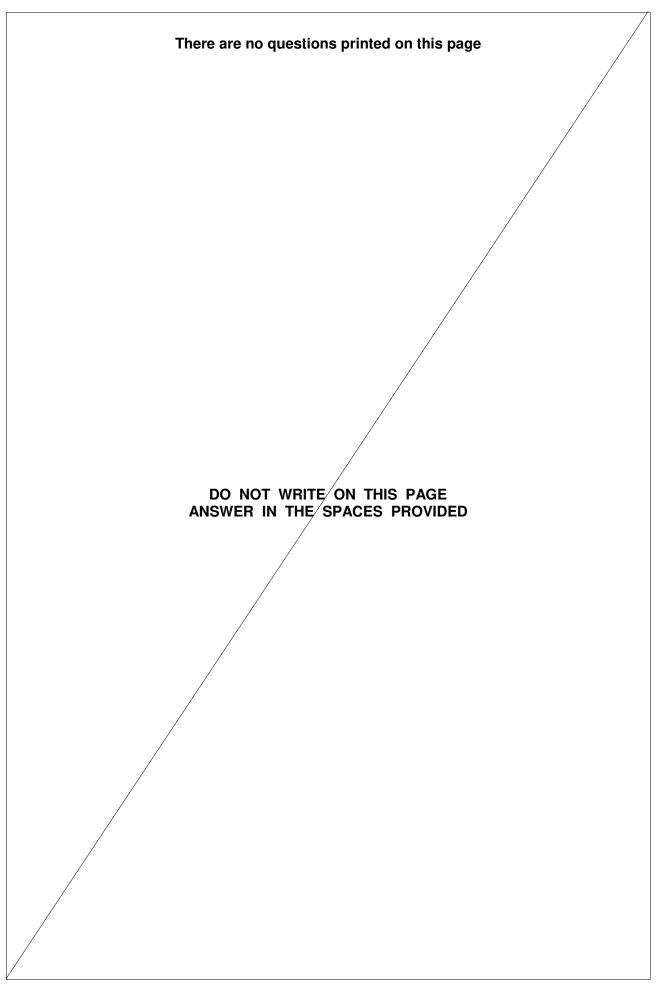


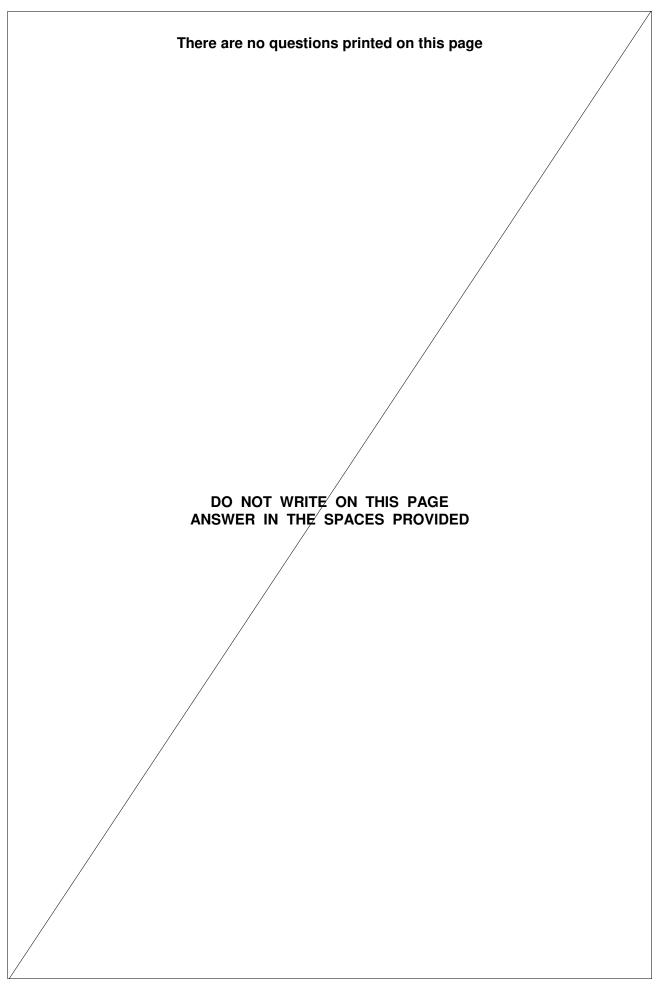


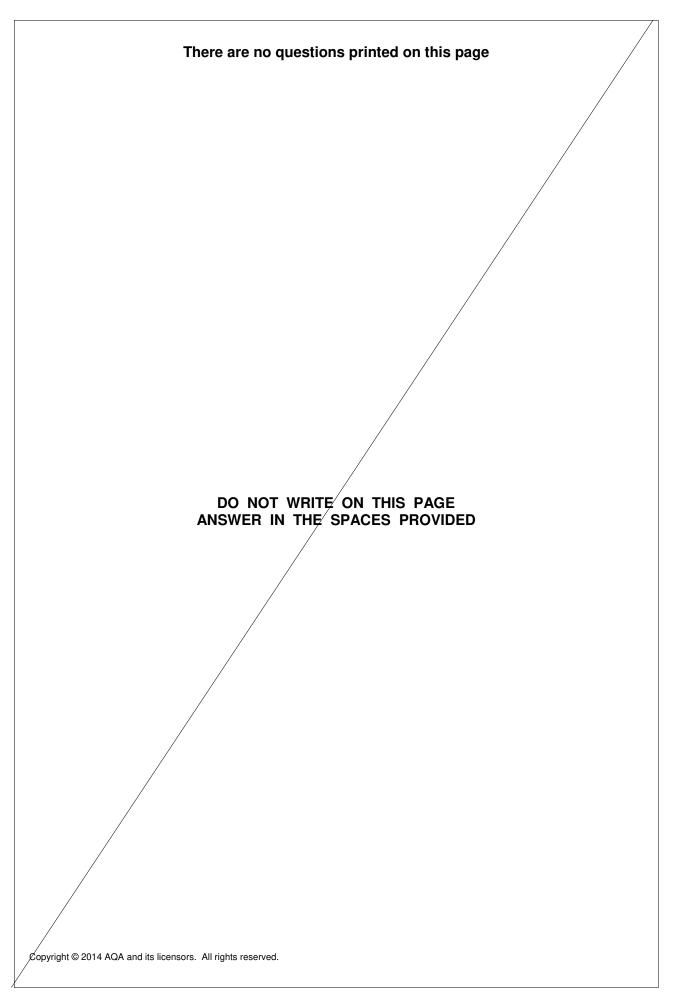

09.2	The product of step <b>1</b> was purified by recrystallisation as follows.
	The crude product was dissolved in <b>the minimum quantity of hot water</b> and the hot solution was filtered through a hot filter funnel into a conical flask. This filtration removed any insoluble impurities. The flask was <b>left to cool to room temperature.</b>
	The crystals formed were filtered off using a Buchner funnel and a clean cork was used to compress the crystals in the funnel. A little cold water was then poured through the crystals. After a few minutes, the crystals were removed from the funnel and weighed. A small sample was then used to find the melting point.
	Give reasons for each of the following practical steps. [4 marks]
	The minimum quantity of hot water was used
	The flask was cooled to room temperature before the crystals were filtered off
	The crystals were compressed in the funnel
	A little cold water was poured through the crystals
	Question 9 continues on the next page

3 The melting point of the sample in Question 9.2 was found to be slightly lower than 09 a data-book value. Suggest the most likely impurity to have caused this low value and an improvement to the method so that a more accurate value for the melting point would be obtained. [2 marks] Figure 8 is repeated here to help you answer the following questions. Figure 8  $NH_2$ NHCOCH₃ NHCOCH₃ Step 1 Step 2 ŃΟ₂ Step 3  $\mathrm{NH}_{\mathrm{2}}$ ŅΗ₂ Step 4 NO₂ NH₂

<b>0 9 . 4</b> In an experiment starting with 5.05 g of phenylamine, 4.82 g of purifi were obtained in step 1.	ed product
Calculate the percentage yield in this reaction. Give your answer to the appropriate number of significant figures.	[3 marks]
Percentage yield =	%
<b>0 9 . 5</b> A reagent for step 2 is a mixture of concentrated nitric acid and conc sulfuric acid, which react together to form a reactive intermediate.	entrated
Write an equation for the reaction of this intermediate in step <b>2</b> .	[1 mark]
<b>09</b> . <b>6</b> Name a mechanism for the reaction in step <b>2</b> .	[1 mark]
<b>0 9 . 7</b> Suggest the type of reaction occurring in step 3.	[1 mark]
<b>0 9 . 8</b> Identify the reagents used in step 4.	[1 mark]





Typesetter code


1 0	The relative integration values for the NMR peaks are shown on Figure	10.
	Deduce the structure of compound <b>R</b> by analysing <b>Figure 9</b> and <b>Figure</b> Explain each stage in your deductions.	
	Use <b>Table A</b> and <b>Table B</b> on the Data Sheet.	[8 marks]
	Turn over for the next question	

11	Butanone is reduced in a two-step reaction using $NaBH_4$ followed by dilute hydrochloric acid.
11.1	Write an overall equation for the reduction of butanone using [H] to represent the reductant. [1 mark]
11.2	By considering the mechanism of the reaction, explain why the product has <b>no</b> effect on plane polarised light. [6 marks]

12 1 2 . 1	But-1-ene reacts with a reagent of the form HY to form a saturated compound. Suggest a reagent of the form HY which reacts with but-1-ene. [1 mark]
12.2	Name and draw a mechanism for the reaction in Question <b>12.1</b> . [5 marks] Name of mechanism
	Mechanism
12.3	Explain how three isomeric products are formed when HY reacts with but-1-ene.
	[3 marks]
	END OF QUESTIONS





