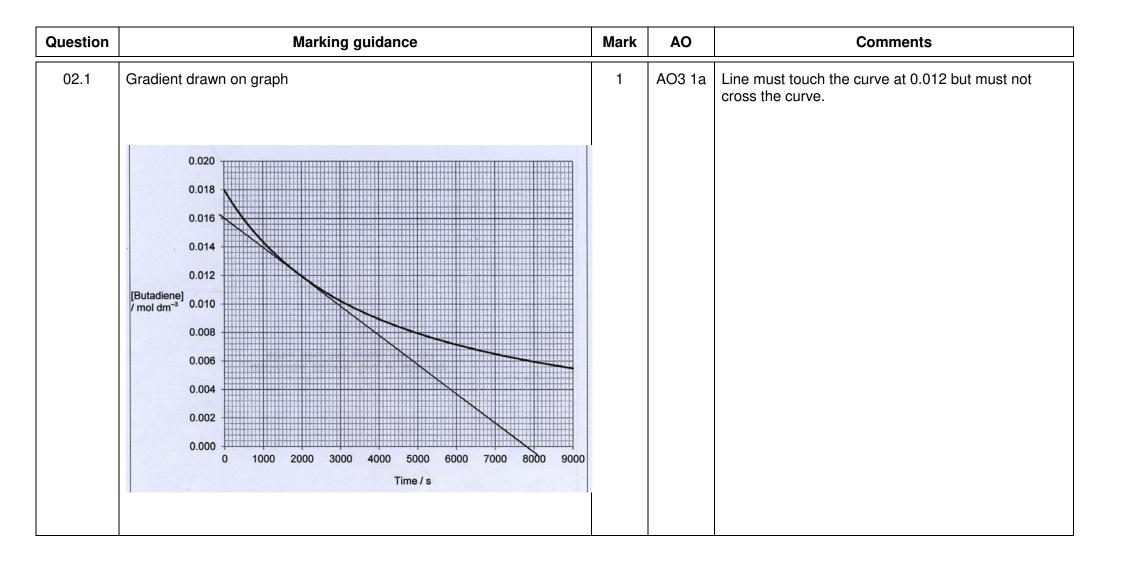


AQA Qualifications

A-level Chemistry


Paper 2 (7405/2): Organic and Physical Chemistry Mark scheme

7405 Specimen paper

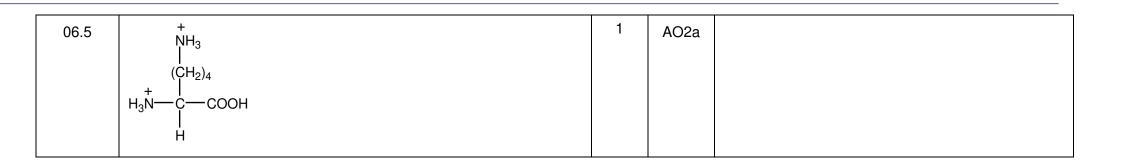
Version 0.5

Question	Marking guidance	Mark	AO	Comments
01.1	Consider experiments 1 and 2: [B constant] [A] increases × 3: rate increases by 3 ² therefore 2nd order with respect to A	1	AO3 1a	
	Consider experiments 2 and 3:			
	[A] increases \times 2: rate should increase \times 2 ² but only increases \times 2			
	Therefore, halving [B] halves rate and so 1st order with respect to B	1	AO3 1a	
	Rate equation: rate = $k[A]^2[B]$	1	AO3 1b	
01.2	rate = $k [C]^2 [D]$ therefore k = rate / $[C]^2 [D]$	1	AO2h	
	$k = \frac{7.2 \times 10^{-4}}{(1.9 \times 10^{-2})^2 \times (3.5 \times 10^{-2})} = 57.0$	1	AO2h	Allow consequential marking on incorrect transcription
	$mol^{-2} dm^{+6} s^{-1}$	1	AO2h	Any order
01.3	rate = 57.0 × $(3.6 \times 10^{-2})^2$ × 5.4 × 10 ⁻² = 3.99 × 10 ⁻³ (mol dm ⁻³ s ⁻¹) OR	1	AO2h	
	Their $k \times (3.6 \times 10^{-2})^2 \times 5.4 \times 10^{-2}$			

01.4	Reaction occurs when molecules have $E \ge E_a$ Doubling T causes <u>many</u> more molecules to have this <i>E</i> Whereas doubling [E] only doubles the number with this <i>E</i>	1 1 1	AO1a AO1a AO1a	
01.5	$E_{\rm a} = RT(\ln A - \ln k)/1000$	1	AO1b	Mark is for rearrangement of equation and factor of 1000 used correctly to convert J into kJ

02.2				Extended response
	Stage 1: Rate of reaction when concentration = $0.0120 \text{ mol dm}^{-3}$			
	From the tangent			
	Change in [butadiene] = $-0.0160 - 0$ and change in time = $7800 - 0$	1	AO3 1a	
	Gradient = $-(0.0160 - 0)/(7800 - 0) = -2.05 \times 10^{-6}$			
	Rate = 2.05×10^{-6} (mol dm ⁻³ s ⁻¹)	1	AO3 1a	
	Stage 2: Comparison of rates and concentrations			Marking points in stage 2 can be in either order
	Initial rate/rate at $0.0120 = (4.57 \times 10^{-6})/(2.05 \times 10^{-6}) = 2.23$	1	AO3 1a	Marking points in stage 2 can be in either order
	Inital concentration/concentration at point where tangent drawn = $0.018/0.012 = 1.5$	1	AO3 1a	
	Stage 3: Deduction of order If order is 2, rate should increase by factor of $(1.5)^2 = 2.25$ this is approximately equal to 2.23 therefore order is 2nd with respect to butadiene	1	AO3 1b	

Question	Marking guidance	Mark	AO	Comments
03.1	2,2,4-trimethylpentane	1	AO1a	
03.2	5	1	AO2b	
03.3	$C_{20}H_{42} \longrightarrow C_8H_{18} + 2C_3H_6 + 3C_2H_4$	1	AO2b	
03.4	Mainly alkenes formed	1	AO1b	
03.5	4 (monochloro isomers)	1	AO2b	
	$\begin{array}{cccccc} CH_3 & H & CH_3 \\ I & I & I \\ H_3 C & C & C & C & CH_3 \\ I & I & I \\ H & CI & CH_3 \end{array}$	1	AO2a	
03.6		1	AO2a	

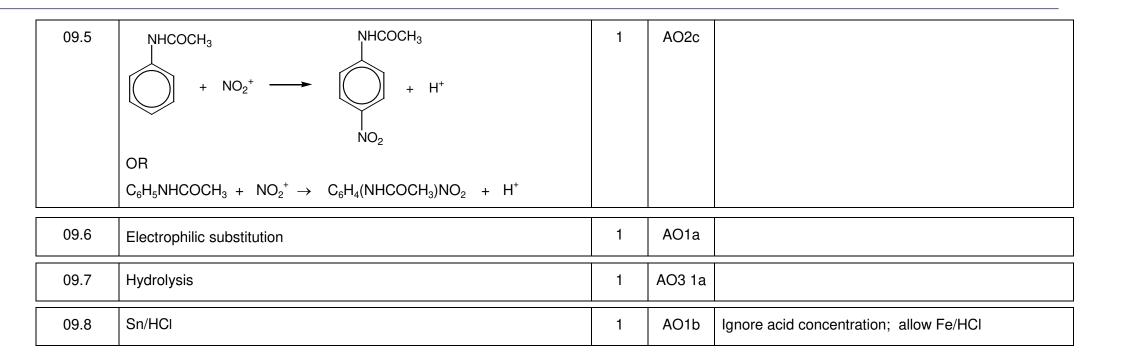

03.7	$C_8 H_{17}^{35} CI = 96.0 + 17.0 + 35.0 = 148.0$ and $C_8 H_{17}^{37} CI = 96.0 + 17.0 + 37.0 = 150.0$	1	AO1b	Both required
	$M_{\rm r}$ of this C ₈ H ₁₇ Cl (<u>1.5</u> × 148.0) + (<u>1.0</u> × 150.0) = 148.8 2.5 2.5	1	AO1b	
03.8	$\begin{array}{cccc} \underline{24.6} & \underline{2.56} & \underline{72.8} \\ 12 & 1 & 35.5 \end{array} = 2.05 : 2.56 : 2.05 \end{array}$			
	Simplest ratio = $\frac{2.05}{2.05} : \frac{2.56}{2.05} : \frac{2.05}{2.05}$			
	= 1 : 1.25 : 1	1	AO2b	
	Whole number ratio $(\times 4) = 4 : 5 : 4$	1	AO2b	
	$MF = C_8H_{10}CI_8$	1	AO2b	

Question	Marking guidance	Mark	AO	Comments
04.1	3-methylbutan-2-ol	1	AO1a	
04.2	$H_{3}C \xrightarrow{CH_{3}}{I}C \xrightarrow{C}{I}CH_{3}$	1	AO2g	Allow (CH ₃) ₂ CHCOCH ₃
04.3	Elimination	1	AO1a	
04.4	$H_{3}C - C = C - CH_{3}$	1	AO2g	Allow (CH ₃) ₂ C=CHCH ₃
	$ \begin{array}{c} CH_{3} \\ H_{3}C - C - C - C - C - C - C - C - C - C -$	1	AO2g	Allow (CH ₃) ₂ CHCH=CH ₂

04.5	Position	1	AO1a	
04.6	СВА	1	AO3 1b	
04.7	$ \begin{array}{c} CH_{3}\\ H_{3}C & -\!$	1	AO2g	Allow (CH ₃) ₂ C(OH)CH ₂ CH ₃
04.8	$H_{3}C \xrightarrow{CH_{3}}{I} H_{2}C \xrightarrow{CH_{2}OH}{I} H_{3}C \xrightarrow{CH_{2}OH}{I} H_{3}$	1	AO2e	Allow (CH ₃) ₃ CCH ₂ OH

Question	Marking guidance	Mark	AO	Comments
05.1	Secondary	1	AO1a	
05.2	Nitrogen and oxygen are very electronegative Therefore, C=O and N–H are polar Which results in the formation of a hydrogen bond between O and H In which a lone pair of electrons on an oxygen atom is strongly attracted to the δ +H	1 1 1 1	AO1a AO1a AO1a AO1a	

Question	Marking guidance	Mark	AO	Comments
06.1	$H_{2}N - C - C - N - C - C - N - C - C - N - C - C$	1	AO2a	
06.2	$H_{3}N - C - COO$	1	AO2a	
06.3	$ \begin{array}{c} CH_{3} H \\ + I I \\ H_{3}C - N - C - C - OH (Br) \\ I I I \\ CH_{3} H O \end{array} $	1	AO2a	Allow $(CH_3)_3 \overset{+}{N} - CH_2 - COOH (Br)$
06.4	2-amino-3-hydroxybutanoic acid	1	AO2a	



Question	Marking guidance	Mark	AO	Comments
07.1	H CH ₃	1	AO1a	
	Ċ==Ċ I CH ₃ CI			
	Addition	1	AO1a	
07.2	Н Н НО—С,—С,—ОН	1	AO2e	
	HO-ĊĊ-OH CH ₃ CH ₃			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	AO2e	
07.3	Q is biodegradable	1	AO2g	
	Polar C=O group or δ + C in Q (but not in P)	1	AO2c	
	Therefore, can be attacked by nucleophiles (leading to breakdown)	1	AO2c	

Question	Marking guidance	Mark	AO	Comments
08.1	2-deoxyribose	1	AO1a	
08.2	Base A Top N–H forms hydrogen bonds to lone pair on O of guanine The lone pair of electrons on N bonds to H–N of guanine A lone pair of electrons on O bonds to lower H–N of guanine	1 1 1 1	AO3 1b AO2a AO2a AO2a	If Base B stated, allow 1 mark only for response including hydrogen bonding Allow all 4 marks for a correct diagram showing the hydrogen bonding Students could also answer this question using labels on the diagram
08.3	Allow either of the nitrogen atoms with a lone pair NOT involved in bonding to cytosine	1	AO2a	
08.4	Use in very small amounts / target the application to the tumour	1	AO2e	

Question	Marking guidance	Mark	AO	Comments
09.1	(nucleophilic) addition-elimination	1	AO1a	Not electrophilic addition-elimination
	$\begin{array}{ccccccccc} M2 & M3 & & & & & & & & & & & & & & & & & $	4	AO2a	Allow C_6H_5 or benzene ring Allow attack by : $NH_2C_6H_5$ M2 not allowed independent of M1, but allow M1 for correct attack on C+ M3 for correct structure <u>with charges</u> but lone pair on O is part of M4 M4 (for three arrows and lone pair) can be shown in more than one structure

09.2	The minimum quantity of hot water was used:			
	To ensure the hot solution would be saturated / crystals would form on cooling	1	AO1b	
	The flask was left to cool before crystals were filtered off:			
	Yield lower if warm / solubility higher if warm	1	AO1b	
	The crystals were compressed in the funnel:			
	Air passes through the sample not just round it	1	AO1b	Allow better drying but not water squeezed out
	A little cold water was poured through the crystals:			
	To wash away soluble impurities	1	AO1b	
09.3	Water	1	AO3 1b	Do not allow unreacted reagents
	Press the sample of crystals between filter papers	1	AO3 2b	Allow give the sample time to dry in air
09.4	$M_{\rm r}$ product = 135.0	1	AO2h	
	Expected mass = $5.05 \times \frac{135.0}{93.0} = 7.33 \text{ g}$	1	AO2h	
	Percentage yield = $\frac{4.82}{7.33} \times 100 = 65.75 = 65.8(\%)$	1	AO1b	Answer must be given to this precision

Question		Marking guidance	Mark	AO	Comments
10	IR M1 NMR	Absorption at 3360 cm ⁻¹ shows OH alcohol present	1	AO3 1a	Extended response Deduction of correct structure without explanation scores maximum of 4 marks as this does not show a clear, coherent line of reasoning.
	M2	There are 4 peaks which indicates 4 different environments of hydrogen The integration ratio = $1.6: 0.4: 1.2: 2.4$ The simplest whole number ratio is $4: 1: 3: 6$	1	AO3 1a AO3 1a	Maximum of 6 marks if no structure given OR if coherent logic not displayed in the explanations of how two of OH, CH_3 and CH_2CH_3 are identified.
	M4 M5	The singlet (integ 1) must be caused by H in OH alcohol The singlet (integ 3) must be due to a CH_3 group with no adjacent H	1 1	AO3 1a AO3 1b	
	M7	Quartet + triplet suggest CH_2CH_3 group Integration 4 and integration 6 indicates two equivalent CH_2CH_3 groups $H_3C - CH_2CH_3$ $H_3C - CH_2CH_3$ $H_3C - CH_2CH_3$	1 1	AO3 1b AO3 1b AO3 1b	

Question		Marking guidance	Mark	AO	Comments
11.1	$CH_3CH_2COCH_3 + 2[H] \longrightarrow CH_3CH_2CH(OH)CH_3$		1	AO1b	
11.2		on is marked using levels of response. Refer to the Mark tructions for Examiners for guidance on how to mark this All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3. All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 3. Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order or show confused reasoning. Insufficient correct chemistry to gain a mark.	6	1 AO1a 5 AO2a	 Indicative Chemistry content Stage 1: Formation of product Nucleophilic attack Planar carbonyl group H⁻ attacks from either side (stated or drawn) Stage 2: Nature of product Product of step 1 shown This exists in two chiral forms (stated or drawn) Equal amounts of each enantiomer/racemic mixture formed Stage 3: Optical activity Optical isomers/enantiomers rotate the plane of polarised light equally in opposite directions With a racemic/equal mixture the effects cancel

Question	Marking guidance	Mark	AO	Comments
12.1	HBr OR HCI OR H ₂ SO ₄	1	AO1b	Allow HI or HY
12.2	Electrophilic addition	1	AO1a	
	$\begin{array}{c} H & M1 & H \\ C = C \\ H & CH_2CH_3 \end{array} \longrightarrow \begin{array}{c} H_3C - C \\ H_3C - C \\ H \\ M2 \\ H \end{array} \xrightarrow{H}_{Br} \end{array} \xrightarrow{H}_{Br} CH_2CH_3 \xrightarrow{H}_{Br} CH_2CH_3$	4	AO2a	Allow consequential marking on acid in 12.1 and allow use of HY
12.3	The major product exists as a pair of enantiomers The third isomer is 1-bromobutane (minor product)	1	AO2a AO2a	
	Because it is obtained via primary carbocation	1	AO2a	