Oxford Cambridge and RSA

GCE

Chemistry A

Unit H032/02: Depth in chemistry
Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
$\mathbf{R E}$	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question			Answer	Marks	Guidance
1	(a)	(i)	Electrostatic $\xlongequal{\text { attraction }}$ between positive and negative ions	1	ALLOW oppositely charged ions ALLOW cations and anions ALLOW ' + ' for positive and ' '-' for negative IGNORE references to metal and non-metal IGNORE references to transfer of electrons
		(ii)	Ba shown with either 0 or 8 electrons AND O shown with 8 electrons with 6 dots and 2 crosses (or vice versa) Correct charges on both ions	2	For first mark, if eight electrons are shown around Ba , the 'extra' electrons around O must match the symbol chosen for the electrons for Ba . IGNORE inner shells Circles not required Brackets not required
		(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 5.89×10^{21} award 2 marks for calculation Moles of barium oxide $\mathrm{n}(\mathrm{BaO})=1.50 / 153.3 \text { OR } 9.78 \times 10^{-3}$ Number of barium ions $\left(9.78 \times 10^{-3} \times 6.02 \times 10^{23}\right)=5.89 \times 10^{21}$ 3 SF AND standard form required	2	ALLOW 0.00978 up to calculator value 0.009784735 ALLOW ECF from incorrect moles of BaO Common incorrect answers are shown below IF 137.3 is used for the molar mass ALLOW 1 mark total for 6.58×10^{21} (0.010924981 mol) OR 6.56 x $10^{21}(0.0109 \mathrm{~mol})$ IF 153 is used for the molar mass ALLOW 1 mark total for 5.90×10^{21}
	(b)	(i)	Barium chloride does not conduct electricity when solid AND	2	IGNORE use of 'free' instead of 'mobile' ALLOW ions are not free to move

Question		Answer	Marks	Guidance
		because it has ions which are fixed (in position/in lattice) Barium chloride conducts when in aqueous solution AND because it has mobile ions		ALLOW ions are held (in position/in lattice) ALLOW ions are not mobile IGNORE charge carriers DO NOT ALLOW electrons moving ALLOW one mark for comparison that does not identify (s) and (aq).
	(ii)	Test for sulfate/ $\mathrm{SO}_{4}{ }^{2-}$ White precipitate forms (when barium chloride solution is mixed with a solution containing sulfate ions)	2	IGNORE hydrochloric acid ALLOW white solid IGNORE cloudy DO NOT ALLOW test result linked to incorrect anion
	(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2 award 2 marks $\begin{aligned} & M\left(\mathrm{BaCl}_{2}\right)=\left((137.3+(35.5 \times 2))=208.3\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)\right. \\ & 244.3-208.3=36 \\ & \text { AND } \\ & 36 / 18=2 \end{aligned}$	2	ALLOW $208\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ ALLOW ECF for incorrectly calculated molar mass provided the final answer is rounded to nearest whole number
(c)	(i)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6}$	1	IGNORE $1 \mathrm{~s}^{2}$ seen twice ALLOW upper case letters AND subscripts
	(ii)	Products of reaction A = Barium hydroxide $/ \mathrm{Ba}(\mathrm{OH})_{2}$ $\mathbf{B}=$ Ammonia $/ \mathrm{NH}_{3}$ Formula for barium nitride $\mathrm{Ba}_{3} \mathrm{~N}_{2}$ Balanced equation AND state symbols $\mathrm{Ba}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 3 \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{~g})$ State symbols are required	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW one mark for correct products incorrectly labelled Formulae must be correct No ECF from any incorrect formula ALLOW multiples Correct equation with state symbols scores 4 marks
		Total	16	

Question	Answer	Marks	Guidance
	There is a description based on at least two of the main scientific points OR The candidate explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. e.g. 'add zinc and acid and measure volume (no mass, volume or time intervals); calculations that have little structure, absent units and little working. 0 marks No response or no response worthy of credit.		
	Total	6	Level 0

Question		Answer	Marks	Guidance
	(ii)	Any two from the following: - Heat released to the surroundings - Incomplete combustion - Non-standard conditions	2	ALLOW heat loss ALLOW incomplete reaction OR not everything burns IGNORE reference to evaporation
(b)	(i)	Value for butane plotted accurately on the graph \checkmark	1	relative molecular mass $=58$ $\Delta_{\mathrm{c}} H^{\circ}=-2877 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Check accuracy: - There must be a visible point - Vertically: touching the 58 line - Horizontally: between 2800 and 2900
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE	3	relative molecular mass $=72$

Question			Answer	Marks	Guidance
4	(a)		Displayed formulae of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ AND C-O AND O-H polar bonds shown on $\mathrm{CH}_{3} \mathrm{OH}$ molecule with $\delta+$ and $\delta-$ AND Both O-H polar bonds shown on $\mathrm{H}_{2} \mathrm{O}$ molecule with $\delta+$ and $\delta-$ Two lone pairs shown on both oxygen atoms AND Hydrogen bond/ H -bond labelled and in the correct position between the H on water and the oxygen lone pair on methanol	2	Must be displayed formulae IGNORE $\delta+$ shown on other H atoms ALLOW hydrogen bond between the H on methanol (OH) and the oxygen lone pair on water
	(b)	(i)	3-methylbutan-2-ol \checkmark	1	ALLOW 3-methyl-2-butanol ALLOW 3-methylbutane-2-ol ALLOW absence of hyphens IGNORE commas DO NOT ALLOW 2-methylbutan-3-ol
		(ii)	Peak X $(m / z=45)$ $\mathrm{CH}_{3} \mathrm{CHOH}^{+}$ Peak Y $(m / z=88)$	2	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O} \text { has lost } \mathrm{C}_{3} \mathrm{H}_{7}$ IGNORE $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+} \mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}^{+}$ambiguous DO NOT ALLOW unfeasible fragments e.g. $\mathrm{C}_{3} \mathrm{H}_{9}{ }^{+}$(too many H atoms) ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above for both structures IGNORE $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}^{+}$ ALLOW $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}^{+}$

Quest	Answer	Marks	Guidance
	$\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}{ }^{+}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}$		+ charge (anywhere on structure) required for each response ALLOW one mark if both formulae are correct but with no charge/incorrect charge ALLOW one mark if both formulae are correct but incorrectly labelled \mathbf{X} / \mathbf{Y}
(c)*	Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive explanation with all three scientific points covered thoroughly. There is a well-developed description with a logical structure including correct chemical equations and an explanation with a clear line of reasoning including a fully labelled diagram. Level 2 (3-4 marks) The candidate attempts all three scientific points but explanations are incomplete. OR Explains two scientific points thoroughly with no omissions. The description has a line of reasoning presented with some structure and includes correct structural formulae and an accurate diagram of a distillation apparatus. Level 1 (1-2 marks) A simple explanation based on at least two of the main scientific points	6	Indicative scientific points 1. Oxidation reaction forming aldehyde - acid/ H^{+}AND dichromate/ $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ - heat AND distillation - organic product is butanal/ $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ $+\mathrm{H}_{2} \mathrm{O}$ 2. Oxidation reaction forming carboxylic acid - acid/ $/ \mathrm{H}^{+}$AND dichromate/ $/ \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ - heat under reflux - organic product is butanoic acid/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ 3. Distillation - diagram of apparatus with condenser - condenser has water flow - collection of organic product - product is separated to prevent further oxidation (to carboxylic acid)

Question		Answer	Marks	Guidance
OR Tew omissions. The description may be communicated in an unstructured way but it includes the correct reagents and conditions for the formation of the aldehyde. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.				
0				

Question			Answer	Marks	Guidance
5	(a)		$\begin{aligned} & \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{2} \\ & \mathrm{OR} \\ & \mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COOH} \\ & \hline \end{aligned}$	1	
	(b)	(i)	Tetrahedral AND 109.5 (으) four bonded pairs repel OR four bonds repel	2	Mark each point independently ALLOW range 109 - 110° IGNORE surrounded by four atoms IGNORE four areas of electron charge repel IGNORE four electron pairs repel (one could be lp) DO NOT ALLOW atoms repel
		(ii)	104.5() ${ }^{(1)}$	1	ALLOW range 104-105
	(c)		LOOK ON THE SPECTRUM for labelled peaks which can be given credit $\begin{aligned} & \mathrm{C}=\mathrm{O} \\ & 1630-1820\left(\mathrm{~cm}^{-1}\right) \\ & \text { AND } \\ & \mathrm{C}=\mathrm{O} \\ & \\ & \text { O-H } \\ & 3200-3600 \mathrm{~cm}^{-1} \\ & \text { AND } \\ & \text { O-H } \checkmark \end{aligned}$ Any two structures of compound B from $\begin{aligned} & \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{OH} \\ & \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO} \\ & \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CHO} \end{aligned}$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW wavenumber values that identify the peak within the range 1630-1820 ALLOW carbonyl OR aldehyde OR ketone for $\mathrm{C}=\mathrm{O}$ ALLOW wavenumber values that identify the peak within the range 3200-3600 ALLOW alcohol for O-H IGNORE other bonds ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above IGNORE names Penalise incorrect connectivity once only

Question		Answer	Marks	Guidance
(d)	(i)	Ultraviolet (radiation)/UV \checkmark	1	ALLOW sunlight IGNORE temperature
	(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CHClCOOH}+\mathrm{HCl} \quad \checkmark$	1	ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{ClCOOH}+\mathrm{HCl}$ ALLOW $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{ClO}_{2}+\mathrm{HCl}$
	(iii)	one electron from the bond (pair) goes to each atom/chlorine/radical	1	ALLOW the breaking of a covalent bond where each atom keeps one of the bonding electrons IGNORE particle for atom ALLOW one electron from the bond goes to each product / species DO NOT ALLOW molecule or compound for atom IGNORE homolytic fission equations
	(iv)	```Propagation step 1 \(\mathrm{Cl} \cdot+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{CHCOOH} \cdot+\mathrm{HCl}\) Propagation step 2 \(\mathrm{CH}_{3} \mathrm{CHCOOH} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CHClCOOH}+\mathrm{Cl} \cdot\)```	2	ALLOW 1. $\mathrm{Cl} \cdot+\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \cdot+\mathrm{HCl}$ 2. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{\bullet}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{ClO}_{2}+\mathrm{Cl} \cdot$ ALLOW dot at any position on the radical ALLOW 1 mark if both equations correct but any dots omitted from radicals
	(v)		1	Dot shown in correct position ALLOW -OH

Question		Answer		Marks	Guidance
	(vi)	Any structure with two or more Cl atoms on alkyl chain (provided that one Cl is at $\mathrm{C}-2)$ e.g.	$\mathbf{1}$	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above DO NOT ALLOW $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$	

Question			Answer	Marks	Guidance
6	(a)	(i)	 Acid (catalyst) AND heat	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW (heat under) reflux ALLOW $\mathrm{H}_{3} \mathrm{PO}_{4}$ OR $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{OR} \mathrm{H}^{+}$ DO NOT ALLOW other named acids IGNORE concentration/pressure IGNORE water/steam
		(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 44.4(\%) award all 3 marks for calculation Amount cyclohexene (m / M) $=1.23 / 82$ OR 0.0150 mol Amount of bromocyclohexane (m / M) $=5.50 / 162.9$ OR 0.0338 mol \% yield $=(0.0150 / 0.0338) \times 100=44.4(\%) \checkmark$ Final answer must be to 3 significant figures	3	If there is an alternative answer, check to see if there is any ECF credit possible ALLOW 3 SF: 0.0338 up to calculator value of 0.033763044 correctly rounded Common ECFs (2 marks) - Incorrect $M_{\mathrm{r}} \rightarrow$ incorrect moles of cyclohexene - Incorrect $M_{\mathrm{r}} \rightarrow$ incorrect moles of 2bromocyclohexane e.g. ALLOW two marks for use of incorrect mass of bromocyclohexane with other calculations correct $\text { e.g. }(5.50 / 163)=0.033742331 \rightarrow 44.5 \%$ ALLOW calculation in mass Theoretical mass yield: $\begin{aligned} & m\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)=0.0338 \times 82=2.77 \mathrm{~g} \\ & \% \text { yield }=(1.23 / 2.77) \times 100=44.4 \% \\ & \hline \end{aligned}$
	(b)			4	ANNOTATE ANSWER WITH TICKS AND

Question	Answer	Marks	Guidance
	Curly arrow from double bond to Br of $\mathrm{Br}-\mathrm{Br} \checkmark$ Correct dipole shown on $\mathrm{Br}-\mathrm{Br}$ AND curly arrow showing breaking of $\mathrm{Br}-\mathrm{Br}$ bond \checkmark OR Correct carbocation with + charge on C with 3 bonds AND curly arrow from Br^{-}to C^{+}of carbocation \checkmark OR Correct product:		CROSSES ETC Curly arrow must start from bond and go to correct atom DO NOT ALLOW any other partial charges e.g. shown on double bond DO NOT ALLOW missing H on displayed formulae (penalise once only) DO NOT ALLOW $\delta+$ on C of carbocation. Curly arrow must come from a lone pair on Br^{-} OR from the negative sign of Br^{-}ion (then lone pair on Br^{-}ion does not need to be shown) IGNORE wording if diagrams are correct Maximum of two marks for mechanism based on incorrect structure of cyclohexene
	Total	9	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

