

Pearson Edexcel Level 3 GCE

Monday 18 October 2021 - Afternoon

Paper referene 9MA0/32

Mathematics

Advanced
PAPER 32: Mechanics

You must have:
 Mathematical Formulae and Statistical Tables (Green), calculator

Total Marks

Candidates may use any calculator allowed by Pearson regulations.

 Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.
Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 50 . There are 5 questions.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

1. A particle P moves with constant acceleration $(2 \mathbf{i}-3 \mathbf{j}) \mathrm{ms}^{-2}$

At time $t=0, P$ is moving with velocity $4 i \mathrm{~m} \mathrm{~s}^{-1}$
(a) Find the velocity of P at time $t=2$ seconds.

At time $t=0$, the position vector of P relative to a fixed origin O is $(\mathbf{i}+\mathbf{j}) \mathrm{m}$.
(b) Find the position vector of P relative to O at time $t=3$ seconds.
(2)
a) As acceleration is constant:

$$
\begin{aligned}
& \underline{v}=\underline{u}+\underline{a} t, \quad \underline{u}=4 \underline{i}, \quad t=2 . \\
& \underline{v}=4 \underline{i}+(2 \underline{i}-3 \underline{j}) \times 2 \\
& \underline{v}=8 \underline{i}-6 \underline{j}
\end{aligned}
$$

b) $r=\underline{u} t+\frac{1}{2} \underline{a} t^{2}, \quad t=3$

$$
\text { Pos.s.tion: }(\underline{i}+\underline{j})+\left[3 \times 4 i+\frac{1}{2} \times(2 i-3 j) \times 3^{2}\right]
$$

$$
=(1+12+9) \underline{i}+\left(1-\frac{1}{2} \times 3^{3}\right) \underline{j}
$$

$$
=22 \underline{i}-12.5 \underline{j}
$$

Question 1 continued
\qquad
(Total for Question 1 is 4 marks)
2.

Figure 1
A small stone A of mass $3 m$ is attached to one end of a string.
A small stone B of mass m is attached to the other end of the string.
Initially A is held at rest on a fixed rough plane.
The plane is inclined to the horizontal at an angle α, where $\tan \alpha=\frac{3}{4}$
The string passes over a pulley P that is fixed at the top of the plane.
The part of the string from A to P is parallel to a line of greatest slope of the plane.
Stone B hangs freely below P, as shown in Figure 1 .
The coefficient of friction between A and the plane is $\frac{1}{6}$
Stone A is released from rest and begins to move down the plane.
The stones are modelled as particles.
The pulley is modelled as being small and smooth.
The string is modelled as being light and inextensible.

Using the model for the motion of the system before B reaches the pulley,
(a) write down an equation of motion for A
(b) show that the acceleration of A is $\frac{1}{10} g$
(c) sketch a velocity-time graph for the motion of B, from the instant when A is released from rest to the instant just before B reaches the pulley, explaining your answer.

In reality, the string is not light.
(d) State how this would affect the working in part (b).

Question 2 continued
d)

Equation of motion for A :

$$
3 m g \sin \alpha-T-F=3 m a
$$

b) Resolving perpendicular to the plane

As $\mu=1 / 6, \quad F=\frac{1}{6} R=\frac{1}{2} m g \cos \alpha$.
Equation for the whole system:

$$
\begin{aligned}
& 3 m g \sin \alpha-F-m g=3 m a+m a \\
& \Rightarrow m g\left(3 \sin \alpha-\frac{1}{2} \cos \alpha-1\right)=4 m a \\
& \sin \alpha=3 / 5 \& \cos \alpha=4 / 5 \\
& \Rightarrow g(3 \times 3 / 5-1 / 2 \times 4 / 5-1)=4 a \\
& \Rightarrow \frac{2 g}{5}=4 a \\
& \Rightarrow \quad a=\frac{1}{10} 9
\end{aligned}
$$

Question 2 continued
c)

The acceleration is constant and so the line has a constant gradient.
d) The tension on A would be different to the tension on B.

Question 2 continued

3.

Figure 2
A beam $A B$ has mass m and length $2 a$.
The beam rests in equilibrium with A on rough horizontal ground and with B against a smooth vertical wall.

The beam is inclined to the horizontal at an angle θ, as shown in Figure 2.
The coefficient of friction between the beam and the ground is μ
The beam is modelled as a uniform rod resting in a vertical plane that is perpendicular to the wall.

Using the model,
(a) show that $\mu \geqslant \frac{1}{2} \cot \theta$

A horizontal force of magnitude $k m g$, where k is a constant, is now applied to the beam at A.

This force acts in a direction that is perpendicular to the wall and towards the wall.
Given that $\tan \theta=\frac{5}{4}, \mu=\frac{1}{2}$ and the beam is now in limiting equilibrium,
(b) use the model to find the value of k.

Question 3 continued
要

$$
\begin{aligned}
& M(\widehat{A})=m g a \cos \theta \\
& M(\widehat{A})=2 a \sin \theta
\end{aligned}
$$

As the beam is in equilibrium:

$$
\begin{aligned}
& m g a \cos \theta=2 \operatorname{Sa} \sin \theta \\
& M\left(B^{2}\right)=2 a R \cos \theta \\
& M(B)=m g a \cos \theta+2 F a \sin \theta \\
& 2 a R \cos \theta=m g a \cos \theta+2 F a \sin \theta
\end{aligned}
$$

As $R=m g$ and $F=S$ (as in equilibrium)
Then $R a \cos \theta=2 F a \sin \theta$

$$
\Rightarrow F=\frac{R a \cos \theta}{2 a \sin \theta}=\frac{1}{2} R \cot \theta .
$$

As in equilibrium $F \leq \mu R$

$$
\Rightarrow \quad \frac{1}{2} R \cot \theta \leq \mu R
$$

Question 3 continued

$$
\Rightarrow \mu \geqslant \frac{1}{2} \cot \theta \text { ■ }
$$

b)

$$
\begin{aligned}
& M\left(\widehat{A^{2}}\right)=m g a \cos \theta \\
& M(\widehat{A})=2 N a \sin \theta \\
& m g a \cos \theta=2 N a \sin \theta \\
& N=k m g-F \text { (a sin equilibrium) }
\end{aligned}
$$

$F=\mu m g$ (as in Limiting equilibrium)

$$
\begin{aligned}
& \Rightarrow m g a \cos \theta=2(k m g-\mu m g) \sin \theta \\
& \Rightarrow m g a \cos \theta=2 m g a(k-\mu) \sin \theta \\
& \Rightarrow \quad \cos \theta=2(k-\mu) \sin \theta \\
& \Rightarrow \quad 1=2(k-\mu) \sin \theta / \cos \theta \\
& \Rightarrow \quad 1=\frac{5}{2} k-\frac{5}{2}+1 / 2 \\
& \Rightarrow \quad k=0.9
\end{aligned}
$$

Question 3 continued
4.

Figure 3
A small stone is projected with speed $65 \mathrm{~ms}^{-1}$ from a point O at the top of a vertical cliff. Point O is 70 m vertically above the point N.

Point N is on horizontal ground.
The stone is projected at an angle α above the horizontal, where $\tan \alpha=\frac{5}{12}$
The stone hits the ground at the point A, as shown in Figure 3 .
The stone is modelled as a particle moving freely under gravity.
The acceleration due to gravity is modelled as having magnitude $10 \mathrm{~m} \mathrm{~s}^{-2}$

Using the model,
(a) find the time taken for the stone to travel from O to A,
(b) find the speed of the stone at the instant just before it hits the ground at A.

One limitation of the model is that it ignores air resistance.
(c) State one other limitation of the model that could affect the reliability of your answers.
a) $S=u t+1 / 2 a t^{2}$. (Resolving vertically)
$-70=65 \sin \alpha t-1 / 2 \times 10 \times t^{2}$ (acceleration $=-10 \mathrm{~ms}^{-2}$) $\sin x=5 / 13$.

$$
\begin{aligned}
-70=25 t-5 t^{2} & \Rightarrow t^{2}-5 t-14=0 \\
& \Rightarrow(t-7)(t+2)=0
\end{aligned}
$$

Question 4 continued
As $t f-2$ then $t=7$ seconds.
b) The horizontal component of velocity is modelled as constant.

$$
v_{n}=65 \cos \alpha=65 \times 12 / 13=60 \mathrm{~m} / \mathrm{s}
$$

The vertical component of velocit:

$$
\begin{aligned}
& V_{v}=\sqrt{(-65 \sin \alpha)^{2}+2 \times 10 \times 70} \\
& V_{v}=\sqrt{25^{2}+1400}=45 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The "speed" will then be the magnitude of these velocities.

$$
\text { Speed }=\sqrt{60^{2}+45^{2}}=75 \mathrm{~m} / \mathrm{s}
$$

c) The store is modelled as a partical, but the dimensions of the stone could affect its motion.

Question 4 continued

Question 4 continued
5. At time t seconds, a particle P has velocity $\mathrm{vm} \mathrm{s}^{-1}$, where

$$
\mathbf{v}=3 t^{\frac{1}{2}} \mathbf{i}-2 t \mathbf{j} \quad t>0
$$

(a) Find the acceleration of P at time t seconds, where $t>0$
(b) Find the value of t at the instant when P is moving in the direction of $\mathbf{i}-\mathbf{j}$

At time t seconds, where $t>0$, the position vector of P, relative to a fixed origin O, is r metres.

When $t=1, \mathbf{r}=-\mathbf{j}$
(c) Find an expression for r in terms of t.
(d) Find the exact distance of P from O at the instant when P is moving with speed $10 \mathrm{~ms}^{-1}$
(6)
a) $\underline{a}=\underline{\dot{v}}\left(\frac{d}{d t}(\underline{v})\right)$

$$
a=\frac{3}{2} t^{-1 / 2} i-2 j
$$

b) P is travelling in direction $i-j$ when

$$
\begin{aligned}
& 3 t^{1 / 2} \underline{i}-2 t \underline{j}=k(i-\underline{j})=k_{i}-k \underline{j} \\
\Rightarrow & 3 t^{1 / 2}=k=2 t \\
\Rightarrow & 3=\frac{t}{2}=t^{1 / 2} \\
\Rightarrow & t=\left(\frac{3}{2}\right)^{2}=\frac{9}{4} .
\end{aligned}
$$

c) $\underline{r}=\int \underline{v} d t=\int 3 t^{1 / 2} \underline{i}-2 t \underline{j} d t$

$$
r=2 t^{3 / 2}-t^{2} \underline{j}+C
$$

When $t=1, r=-\underline{j}$

$$
\begin{aligned}
& \underline{r}=2 \underline{i}-\underline{j}+\subseteq=-\underline{j} \quad(\text { when } t=1) . \\
& \quad \Rightarrow \subseteq=-2 i \\
& r=\left(2 t^{3 / 2}-2\right) \underline{i}-t^{2} \underline{j} \\
& \quad \text { or }=2 t^{3 / 2} \underline{i}-t^{2} \underline{j}-2 i
\end{aligned}
$$

d) Speed $=\sqrt{\left(3 t^{1 / 2}\right)^{2}+(2 t)^{2}}$

When speed: Io ms

$$
\begin{aligned}
& \sqrt{\left(3 t^{1 / 2}\right)^{2}+(2 t)^{2}}=10 \\
\Rightarrow & 9 t+4 t^{2}=100 \Rightarrow 4 t^{2}+9 t-100=0 . \\
\Rightarrow & (t-4)(4 t+25)=0 \Rightarrow t=4(\text { as } t>0) . \\
& r=\left(2 \times 4^{3 / 2}-2\right) i-4^{2} j=14 i-16 j
\end{aligned}
$$

distance from $0: \sqrt{14^{2}+(-16)^{2}} \mathrm{~m}$

$$
=2 \sqrt{113} \mathrm{~m}
$$

Question 5 continued

Question 5 continued

Question 5 continued
(Total for Question 5 is 14 marks)

