GCSE

Higher Tier Chemistry 1H

Specimen 2018

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a calculator
- the periodic table (enclosed).

Instructions

- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions $02.3,05.2,08.5$ and 09.4 you need to make sure that your answer:
- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice

In all calculations, show clearly how you work out your answer.

Please write clearly, in block capitals.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

| $\mathbf{0}$ | $\mathbf{1} \quad$ This question is about halogens and their compounds. |
| :--- | :--- | :--- |

Table 1 shows the boiling points and properties of some of the elements in Group 7 of the periodic table.

Table 1

Element	Boiling point in ${ }^{\circ}$ C	Colour in aqueous solution
Fluorine	-188	colourless
Chlorine	-35	pale green
Bromine	X	orange
lodine	184	brown

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	Why does iodine have a higher boiling point than chlorine?

Tick one box.

Iodine is ionic and chlorine is covalent
lodine is less reactive than chlorine

The covalent bonds between iodine atoms are stronger

The forces between iodine molecules are stronger

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Predict the boiling point of bromine. |
| :--- | :--- | :--- | :--- |

\qquad

A redox reaction takes place when aqueous chlorine is added to potassium iodide solution.

The equation for this reaction is:

$$
\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq})
$$

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Look at Table 1. |
| :--- | :--- | :--- | :--- |

What is the colour of the final solution in this reaction?
Tick one box.

Brown

Orange \square
Pale green \square
Colourless \square

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{4}$ What is the ionic equation for the reaction of chlorine with potassium iodide? |
| :--- | :--- | :--- | Tick one box.

$\mathrm{Cl}_{2}+2 \mathrm{~K} \rightarrow 2 \mathrm{KCl}$ \square
$2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}$ \square
$\mathrm{I}^{-}+\mathrm{Cl} \rightarrow \mathrm{I}+\mathrm{Cl}^{-}$ \square
$\mathrm{I}^{-}+\mathrm{K}^{+} \rightarrow \mathrm{KI}$ \square

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ Why does potassium iodide solution conduct electricity? |
| :--- | :--- | :--- | :--- |

Tick one box.
It contains a metal \square
It contains electrons which can move \square
It contains ions which can move \square
It contains water \square
[1 mark]

0	$\mathbf{1}$	6	What are the products of electrolysing potassium iodide solution?

Tick one box.

Product at cathode	Product at anode	
hydrogen	iodine	\square
hydrogen	oxygen	\square
potassium	iodine	\square
potassium	oxygen	\square

| $\mathbf{0}$ | $\mathbf{2} \quad$ An atom of aluminium has the symbol ${ }_{13}^{27} \mathrm{Al}$ |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Give the number of protons, neutrons and electrons in this atom of aluminium.

Number of protons \qquad
Number of neutrons
Number of electrons

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Why is aluminium positioned in Group 3 of the periodic table?

\qquad

Question 2 continues on the next page

Some of the properties of two transition elements and two Group 1 elements are shown in
Table 2.
Table 2

	Transition elements		Group 1 elements	
	Chromium	Iron	Sodium	Caesium
	1857	1535	98	29
Formula of oxides	CrO	FeO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{O}$
	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$		
CrO_{2}	$\mathrm{Fe}_{3} \mathrm{O}_{4}$			
	CrO_{3}			

Use your own knowledge and the data in Table 2 to compare the chemical and physical properties of transition elements and Group 1 elements.
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ Figure $\mathbf{1}$ shows the outer electrons in an atom of the Group 1 element potassium |
| :--- | :--- | :--- | and in an atom of the Group 6 element sulfur.

Figure 1

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	Potassium forms an ionic compound with sulfur.

Describe what happens when two atoms of potassium react with one atom of sulfur.
Give your answer in terms of electron transfer.
Give the formulae of the ions formed.
\qquad

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3} .2$ | 2 | The structure of potassium sulfide can be represented using the ball and stick model |
| :--- | :--- | :--- | :--- | in Figure 2.

Figure 2

The ball and stick model is not a true representation of the structure of potassium sulfide.

Give one reason why.
[1 mark]

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ Sulfur can also form covalent bonds. |
| :--- | :--- | :--- | :--- |

Complete the dot and cross diagram to show the covalent bonding in a molecule of hydrogen sulfide.

Show the outer shell electrons only.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{4}$ Calculate the relative formula mass $\left(M_{r}\right)$ of aluminium sulfate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, |
| :--- | :--- | :--- | :--- |

Relative atomic masses $\left(A_{r}\right)$: oxygen $=16$; aluminium $=27$; sulfur $=32$
\qquad
\qquad
\qquad
Relative formula mass =

Question 3 continues on the next page

| 0 | 3 | 5 | Covalent compounds such as hydrogen sulfide have low melting points and do not |
| :--- | :--- | :--- | :--- | conduct electricity when molten.

Draw one line from each property to the explanation of the property.

Property

Explanation
of property
Electrons are free to move

There are no charged particles free to move

lons are free to move

Weak intermolecular forces of attraction

Does not conduct electricity when molten

Bonds are strong

| 0 | 3 | 6 | lonic compounds such as potassium sulfide have high boiling points and conduct |
| :--- | :--- | :--- | :--- | electricity when dissolved in water.

Draw one line from each property to the explanation of the property.

Explanation of property

Electrons are free
 to move

There are no charged particles free to move
High boiling point

Ions are free

 to move> Weak intermolecular forces of attraction
Conduct electricity when molten
Bonds are strong

Turn over for the next question

| 0 | 4 |
| :--- | :--- |\quad Rock salt is a mixture of sand and salt.

Salt dissolves in water. Sand does not dissolve in water.
Some students separated rock salt.

This is the method used.

1. Place the rock salt in a beaker.
2. Add $100 \mathrm{~cm}^{3}$ of cold water.
3. Allow the sand to settle to the bottom of the beaker.
4. Carefully pour the salty water into an evaporating dish.
5. Heat the contents of the evaporating dish with a Bunsen burner until salt crystals start to form.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{1}$ | Suggest one improvement to step 2 to make sure all the salt is dissolved in the |
| :--- | :--- | :--- | :--- | water.

\qquad
\qquad

Suggest one improvement to step 4 to remove all the sand.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ Suggest one safety precaution the students should take in step 5. |
| :--- | :--- | :--- | :--- |

Another student removed water from salty water using the apparatus in Figure 3.

Figure 3

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{4} \quad$ Describe how this technique works by referring to the processes at \mathbf{A} and \mathbf{B}.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{5}$ What is the reading on the thermometer during this process? |
| :--- | :--- | :--- | :--- |

| 0 | 5 | A student investigated the reactions of copper carbonate and copper oxide with |
| :--- | :--- | :--- | dilute hydrochloric acid.

In both reactions one of the products is copper chloride.

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{1}$ Describe how a sample of copper chloride crystals could be made from copper |
| :--- | :--- | :--- | carbonate and dilute hydrochloric acid.

\qquad
\qquad \longrightarrow (
\qquad
\qquad \longrightarrow
\qquad

| $\mathbf{0}$ | $\mathbf{5} .2$ | A student wanted to make 11.0 g of copper chloride. |
| :--- | :--- | :--- | :--- |

The equation for the reaction is:

$$
\mathrm{CuCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Relative atomic masses, $A_{r}: H=1 ; C=12 ; O=16 ; C I=35.5 ; C u=63.5$

Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.
\qquad
\qquad
\qquad
\qquad
Mass of copper carbonate $=$

Calculate the mass of copper chloride the student actually produced.

0	5	.4

Reaction $1 \quad \mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
Reaction $2 \quad \mathrm{CuO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Reactive formula masses: $\mathrm{CuO}=79.5 ; \mathrm{HCl}=36.5 ; \mathrm{CuCl}_{2}=134.5 ; \mathrm{H}_{2} \mathrm{O}=18$

The percentage atom economy for a reaction is calculated using:
Relative formula mass of desired product from equation $\times 100$ Sum of relative formula masses of all reactants from equation

Calculate the percentage atom economy for Reaction 2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage atom economy = \%

Compare the atom economies of the two reactions for making copper chloride.

Give a reason for the difference.
\qquad
\qquad

Turn over for the next question

0	6	A student investigated simple cells using the apparatus shown in Figure 4.

Figure 4

- If metal $\mathbf{2}$ is more reactive than metal $\mathbf{1}$ then the voltage measured is positive.
- If metal $\mathbf{1}$ is more reactive than metal $\mathbf{2}$ then the voltage measured is negative.
- The bigger the difference in reactivity of the two metals, the larger the voltage produced.

The student's results are shown in Table 3.

Table 3

Metal 1	Chromium	Copper	Iron	Tin	Zinc
Chromium	0.0 V				
Copper	1.2 V	0.0 V			
Iron	0.5 V	not measured	0.0 V		
Tin	0.8 V	-0.4 V	0.3 V	0.0 V	
Zinc	0.2 V	-1.0 V	-0.3 V	-0.6 V	0.0 V

| 0 | 6 | $\mathbf{1}$ | The ionic equation for the reaction occuring at the zinc electrode in the simple cell |
| :--- | :--- | :--- | :--- | made using copper and zinc electrodes is:

$$
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}
$$

Zinc is oxidised in this reaction.

Give a reason why this is oxidation.
\qquad
\qquad

0	6	2

Which one of the metals used was the least reactive?
Give a reason for your answer.

Metal
Reason

Question 6 continues on the next page

| 0 | 6 | 3 | Predict the voltage that would be obtained for a simple cell that has iron as |
| :--- | :--- | :--- | :--- | metal 1 and copper as metal 2.

Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	4	$H y d r o g e n ~ f u e l ~ c e l l s ~ h a v e ~ b e e n ~ d e v e l o p e d ~ f o r ~ c a r s . ~$

Write a word equation for the overall reaction that takes place in a hydrogen fuel cell.
[1 mark]

| 0 | 6 | 5 | Write the two half equations for the reactions that occur at the electrodes in a |
| :--- | :--- | :--- | :--- | hydrogen fuel cell.

\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{7}$ Sodium carbonate reacts with dilute hydrochloric acid: |
| :--- | :--- | :--- |

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

A student investigated the volume of carbon dioxide produced when different masses of sodium carbonate were reacted with dilute hydrochloric acid.

This is the method used.

1. Place a known mass of sodium carbonate in a conical flask.
2. Measure $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid using a measuring cylinder.
3. Pour the acid into the conical flask.
4. Place a bung in the flask and collect the gas until the reaction is complete.

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$ The student set up the apparatus as shown in Figure 5.

Figure 5

Identify the error in the way the student set up the apparatus.
Describe what would happen if the student used the apparatus shown.
\qquad
\qquad
\qquad
\qquad

The student corrected the error.
The student's results are shown in Table 4.
Table 4

Mass of sodium carbonate $\mathbf{i n} \mathbf{~}$	Volume of carbon dioxide gas $\mathbf{i n} \mathbf{~ m}^{\mathbf{3}}$
0.07	16.0
0.12	27.5
0.23	52.0
0.29	12.5
0.34	77.0
0.54	95.0
0.59	95.0
0.65	95.0

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ The result for 0.29 g of sodium carbonate is anomalous.

Suggest what may have happened to cause this anomalous result.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{3}$ Why does the volume of carbon dioxide collected stop increasing at $95.0 \mathrm{~cm}^{3}$? |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

| 0 | 7 | $\mathbf{4}$ What further work could the student do to be more certain about the minimum |
| :--- | :--- | :--- | :--- | mass of sodium carbonate needed to produce $95.0 \mathrm{~cm}^{3}$ of carbon dioxide?

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{5}$ The carbon dioxide was collected at room temperature and pressure. |
| :--- | :--- | :--- | :--- |

The volume of one mole of any gas at room temperature and pressure is $24.0 \mathrm{dm}^{3}$.
How many moles of carbon dioxide is $95.0 \mathrm{~cm}^{3}$?
Give your answer in three significant figures.
\qquad
\qquad
\qquad
\qquad
mol

| 0 | 7 | 6 | Suggest one improvement that could be made to the apparatus used that would |
| :--- | :--- | :--- | :--- | give more accurate results.

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7} .7$ | One student said that the results of the experiment were wrong because the first few |
| :--- | :--- | :--- | :--- | bubbles of gas collected were air.

A second student said this would make no difference to the results.
Explain why the second student was correct.
\qquad

1
\qquad
\qquad
\qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{8}$	Sodium hydroxide neutralises sulfuric acid.

The equation for the reaction is:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$

What is meant by a strong acid?
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$	Write the ionic equation for this neutralisation reaction. Include state symbols.

A student used a pipette to add $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide of unknown concentration to a conical flask.

The student carried out a titration to find out the volume of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid needed to neutralise the sodium hydroxide.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{3}$

You should name a suitable indicator and give the colour change that would be seen.
\qquad \longrightarrow \longrightarrow \longrightarrow (\longrightarrow \longrightarrow \longrightarrow 1
\qquad (

Question 8 continues on the next page

The student carried out five titrations. Her results are shown in Table 5.

Table 5

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid in cm^{3}	27.40	28.15	27.05	27.15	27.15

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{4}$ Concordant results are within $0.10 \mathrm{~cm}^{3}$ of each other. |
| :--- | :--- | :--- | :--- |

Use the student's concordant results to work out the mean volume of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid added.
[2 marks]
\qquad
\qquad
\qquad
\qquad
Mean volume $=$ cm^{3}

$\mathbf{0}$	$\mathbf{8}$.5	The equation for the reaction is:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the concentration of the sodium hydroxide.
Give your answer to three significant figures.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Concentration $=$ \qquad $\mathrm{mol} / \mathrm{dm}^{3}$

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{6}$ The student did another experiment using $20 \mathrm{~cm}^{3}$ of sodium hydroxide solution with |
| :--- | :--- | :--- | :--- | a concentration of $0.18 \mathrm{~mol} / \mathrm{dm}^{3}$.

Relative formula mass $\left(M_{r}\right)$ of $\mathrm{NaOH}=40$

Calculate the mass of sodium hydroxide in $20 \mathrm{~cm}^{3}$ of this solution.
\qquad
\qquad
\qquad
\qquad
Mass = g

Turn over for the next question

0	9	This question is about the reaction of ethene and bromine.

The equation for the reaction is:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
$$

0	9	.	$\mathbf{1}$

Draw labelled arrows to show:

- The energy given out (ΔH)
- The activation energy.

Figure 6

| 0 | 9 | 2 |
| :--- | :--- | :--- | When ethene reacts with bromine, energy is required to break covalent bonds in the molecules.

Explain how a covalent bond holds two atoms together.
[2 marks]
\qquad
\qquad
\qquad
\qquad

Figure 7 shows the displayed formulae for the reaction of ethene with bromine.

Figure 7

The bond enthalpies and the overall energy change are shown in Table 6.
Table 6

	$\mathbf{C}=\mathbf{C}$	$\mathbf{C}-\mathbf{H}$	$\mathbf{C}-\mathbf{C}$	$\mathbf{C}-\mathbf{B r}$	Overall energy change
Energy in kJ/mole	612	412	348	276	-95

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{3}$ Use the information in Table $\mathbf{6}$ and Figure $\mathbf{7}$ to calculate the bond energy for the |
| :--- | :--- | :--- | :--- | $\mathrm{Br}-\mathrm{Br}$ bond.

\qquad
\qquad
\qquad
Bond energy
$\mathrm{kJ} /$ mole

| 0 | 9 | 4 | Figure 8 shows the reaction between ethene and chlorine and is similar to the |
| :--- | :--- | :--- | :--- | reaction between ethene and bromine.

Figure 8

"The more energy levels (shells) of electrons an atom has, the weaker the covalent bonds that it forms."

Use the above statement to predict and explain how the overall energy change for the reaction of ethene with chlorine will differ from the overall energy change for the reaction of ethene with bromine.
\qquad (
\qquad ((
\qquad
\qquad
\qquad \longrightarrow
\qquad $\underline{0}$ 4 $\underline{~(~}$ $\underline{4}$

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

Copyright information

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

