GCE

Physics B

H557/03: Practical skills in physics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

1. Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ECF	Incorrect response
L1	Error carried forward
L2	Level 1
L3	Level 2
TE	Level 3
NBOD	Transcription error
POT	Benefit of doubt not given
A	Power of 10 error
SF	Omission mark
\boldsymbol{S}	Error in number of significant figures
\boldsymbol{S}	Correct response

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be presentin answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question			Solution	Marks	Guidance
1	a	i	One mark for each column.	2	Accept t${ }^{2}$ (any combination)
		ii	Both points (their values) plotted correctly to within half a small square. $\sqrt{ }$ Horizontal error bars on every plot EITHER Length of error bars all median value of 0.03 ($3 / 4$ small square) accept $1 / 2$ to 1 small square either side. OR Length of 6 error bars correct - see table in guidance (to within $1 / 2$ small square)	3	height spread small squares 2.00 0.02 up to 1 3.00 0.01 up to $1 / 2$ 4.00 0.03 $1 / 2$ to 1 5.00 0.03 $1 / 2$ to 1 6.00 0.06 1 to 2 7.00 0.06 1 to 2 8.00 0.04 $1 / 2$ to $11 / 2$ Ignore any vertical error bars.
		iii	Acceptable straight line of best fit drawn. \checkmark Gradient calculated correctly= \checkmark	2	Acceptable range: steepest from $(0.24,1.0)$ to $(1.8,8.8)$ least steep from $(0.2,1.0)$ to $(1.8,8.6)$ gradient should be in range 4.75 to 5.0 for an acceptable line. Only answer of 5 (1sf) if calculated value equals 5.0. Watch out for incorrect gradient calculation giving value in range. ALLOW ecf from candidate's line if correct working shown.

	iv	Acceleration of free fall $=2 \times$ value obtained for gradient in part (iii). \checkmark EITHER: Worst fit line drawn on graph \checkmark gradient calculated correctly \checkmark absolute uncertainty in g within range 0.3 to 0.6 (with correct working) ${ }^{\checkmark}$ OR: Calculation of approx uncertainty using $g=\frac{2 s}{t^{2}}$ Eg: relative uncertainty of $h=0.02 \div 2=1 \%$ and relative uncertainty of $t=0.015 \div 0.66=2 \%$. \checkmark Relative uncertainty in g is $1 \%+2 \times 2 \%=5 \% \checkmark$ Absolute uncertainty in g within range 0.3 to 0.7 (with correct working) \downarrow	4	$s=u t+1 / 2 g t^{2}$ and $u=0$, so gradient $=1 / 2 g$. Value written on the answer line should be twice the value calculate for gradient. Steepest or shallowest line drawn through error bars (if drawn). ALLOW ecf for their error bars. Using median values: relative uncertainty of $h=0.02 \div 5=0.4 \%$ and relative uncertainty of $t=0.02 \div 1.01 \approx 2 \%$. \checkmark Relative uncertainty in g is $0.4 \%+2 \times 2 \% \approx 4 \% \checkmark$ If candidate has given gradient value $=g$, only a max 2 marks can be awarded.
b	i	Length of card only. \downarrow	1	DO NOT ALLOW a list of examples.

	ii	First mark for identifying a source of error. Second mark for discussion/comparison of effect of that error. Third mark for a second pair of error and comparison. Any of source/effect pairs: - Duration of drop - Light gate method uses shorter drop so a greater relative/percentage error in time measurement ora - Relevant length measurement - Length of card measured in light gate method is smaller then drop height measured for G-ball so greater relative/percentage error ora. - Problem with card falling between light gates - length of card passing through light gates inaccurate. - Air resistance - If air resistance present then g will not be a constant, or some sensible comparison of air resistance on both experiments. - Precision of timer - Both methods using electronic timers so likely to have similar (absolute) uncertainties.	3	IGNORE reference to distance between light gates for first mark. DO NOT ALLOW explicit reference to measuring height of drop in light gate method for the explanation mark.
		QUESTION TOTAL	15	

Question			Solution	Marks	Guidance
2	a		Measure across a number of fringes AND find mean spacing (divide by the number of fringe widths); \checkmark Using a travelling microscope/ruler \checkmark	2	Accept Vernier callipers
	b	i	$\lambda=a x / D ; \checkmark$ $\begin{aligned} & \lambda=\left(8.5 \times 10^{-5}\right)\left(1.02 \times 10^{-2}\right) \div 1.5 \\ & \lambda=5.8 \times 10^{-7} \mathrm{~m} . \end{aligned}$	3	Any subject. Accept $\lambda=s w / D$ ALLOW use of $n \lambda=a \sin \theta$ with $n=1 \checkmark$ $\sin \theta=\frac{1.02 \times 10^{-2}}{1.5}=6.8 \times 10^{-3} . \theta=0.39^{\circ} \checkmark$ POT error will lose one mark.
	b	ii	Absolute uncertainty in $\mathrm{D}= \pm 1 \times 10^{-2} \mathrm{~m} \checkmark$ EITHER: Percentage uncertainty in λ found by adding their correctly calculated percentage uncertainties eg $=2 \%+10 \%+(.01 \div$ $1.5)^{*} 100=12.7 \%$ or 13% or 12%, Absolute uncertainty in $\lambda=7(.4) \times 10^{-8} \mathrm{~m} \checkmark$ OR State 10% most significant uncertainty and ignore the other two uncertainties. Absolute uncertainty in $\lambda=5.8 \times 10^{-8} \mathrm{~m} \checkmark$ OR: Max value of $\lambda=(\max$ value of $a \times \max$ value of $x) \div(\min$ value of D), or min value of $\lambda=(\min$ value of $a \times \min$ value of $x) \div(\max$ value of D) \checkmark Absolute uncertainty in $\lambda=$ max value of $\lambda-5.78 \times 10^{-7}$, or Absolute uncertainty in $\lambda=5.78 \times 10^{-7}-$ min value of λ, or Absolute uncertainty in $\lambda=1 / 2(\max$ value of $\lambda-\min$ value of $\lambda) \checkmark$	1 2	This could be implied/seen in working. ALLOW ecf for incorrect value of λ from (b)(i) ALLOW ecf for incorrect abs uncert in D provided it is between 0 (ignored) and 5 cm . ALLOW 13\% to give absolute uncertainty $=8 \times 10^{-8} \mathrm{~m}$ If uncertainty in D is ignored/omitted without explanation this final mark can be awarded, for method.

\mathbf{b}	iii	Fringes will be more widely spaced so relative uncertainty in x is less. \checkmark ANY 2 of: (Red light will have wider spacing of fringes) because (average) wavelength is longer. \checkmark Relative uncertainty in D and a remain the same. \checkmark Fringes will be more clearly defined because only one wavelength/frequency or monochromatic ora. \checkmark Fringes will be brighter/easier to see because laser light is more intense	$\mathbf{3}$	
		Question total	$\mathbf{1 3}$	

Question			Solution	Marks	Guidance
4	a	i	Alpha line stops at paper Beta line stops at 3 mm Al Gamma line continues through 1cm Pb	1	1 mark for ALL three paths drawn correctly. Allow arrows.
		ii	Radiation needs to be detected outside the body so γ emitter is used OR β not suitable. \checkmark Radiation causes damage/larger dose to patient so β less suitable (more ionising) OR y more suitable (less ionising).	2	1 mark max. may still be awarded for a correct statement from the marking points if Xenon-135 is chosen If neither isotope is identified, then max 1 mark. Ignore any reference to half-life
		iii	$\begin{aligned} & { }_{37}^{81} R b \rightarrow{ }_{36}^{81 m} \mathrm{Kr}+{ }_{1}^{0} \boldsymbol{e}^{(+)}+{ }_{0}^{0} v \\ & 37 \checkmark \\ & e \text { (with or without the bar) } \checkmark \end{aligned}$	2	1 mark for each. Accept $\boldsymbol{\beta}$ or $\boldsymbol{\beta}^{\boldsymbol{+}}$ NOT e^{-}or β.
		iv	Rubidium decays to produce Krypton. \checkmark	1	Mark given for candidates clearly demonstrating they understand the krypton is generated at the point of use from the parent isotope.
	b	i	- reduce time using the source; \checkmark - this reduces total exposure/dose to ionising radiation \checkmark OR - use tongs to handle source; - increases distance from source OR minimise contamination OR - wear gloves - to minimise contamination OR - point source away from body/use shielding - to reduce dose OR - other valid precaution - associated explanation	2	1 mark given for the precaution, 1 mark for the related explanation. An explanation on its own gains no marks.
		ii	(This records) background radiation \checkmark This value will be subtracted from measurements taken with the source (to obtain the count rate for the source).	2	

Level 3 (5-6 marks)

One (or more) full, accurate and clearly explained mathematical test(s) to show it is exponential AND an accurate calculation of the half thickness.

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Level 2 (3-4 marks) $\checkmark \checkmark$
A correct mathematical test attempted from the data and/or a correct calculation of half-thickness from the graph (multiple readings necessary) with some explanation of mathematical method.

There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

Level 1 (1-2 marks) $\checkmark \checkmark$

There is a basic description of the pattern shown by the data with an incorrect or partial calculation of either the mathematical test or half thickness.

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

6 Indicative scientific points may include:
Use of data in table:

- Data from table used to find constant reduction factor between successive data points.
- Multiple data points tested and shown to have a constant factor.
- Natural log values for count rate calculated and the difference between successive values calculated and found to be constant.
- Other valid test applied successfully.

Use of graph:

- count rate decreases with increasing thickness;
- Relationship shows an exponential decrease of count rate with increasing thickness;
- Data showing count rate halves at regular intervals of shielding thickness.
- Thickness found for countrate to drop by same fraction (half-thickness);
- Finding gradient of curve at different thicknesses to show that it halves at regular intervals.

Calculation of half-thickness value:

- Half thickness $\approx 2 \mathrm{~cm}$.
- Graph used to take measurements of half-thickness.
- Multiple measurements taken at different values of count rate.
- Average value for half-thickness calculated for precision.
- Use $\frac{A_{2}}{A_{1}}=e^{-k x}$ or $\ln A_{2}-\ln A_{1}=k$ and $x_{0.5}=\frac{\ln 2}{k}$ with data from table.
- $\frac{A_{2}}{A_{1}} \approx 0.72$; hence $x_{0.5}=2.1 \mathrm{~cm}$.
- $\quad \ln A_{2}-\ln A_{1} \approx 0.33$; hence $x_{0.5}=2.1 \mathrm{~cm}$.

	ii	Equation rearranged to give $\ln I=\ln I_{0}-\mu x \checkmark$ Gradient calculation using suitable points with $d x \geq 5 \mathrm{~cm} . \checkmark$ Attenuation co-efficient value $=+35 \checkmark$ Unit $\mathrm{m}^{-1} \checkmark$	$\mathbf{4}$	
	Question Total	ALLOW values in range 34 to 36. ALLOW answers given in cm Unit must correspond to POT of value (or calculation).		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

