GCE

Physics B

H557/02: Scientific literacy in physics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

1. Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ES	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
$\mathbf{L 3}$	Level 3
TE	Transcription error
NBOD	Benefit of doubtnot given
POT	Power of 10 error
A	Omission mark
SF	Error in number of significant figures
\boldsymbol{S}	Correct response
\boldsymbol{S}	Wrong physics or equation

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question			Answer	Marks	Guidance
2	a	i	$\begin{aligned} & V=9.0 \times \mathrm{e}^{-3.5 /(4700 \times 10 \wedge-6 \times 1400)} \checkmark \\ & =5.29 \mathrm{~V} \end{aligned}$	2	Must give own value.
	a	ii	$\begin{aligned} & \Delta E=1 / 2 C\left(9.0^{2}-5.3^{2}\right)=0.124 \mathrm{~J} \checkmark \\ & \text { Power }=0.036 \mathrm{~W} \checkmark \end{aligned}$ Current through/p.d. across component not constant \checkmark	3	$3{ }^{\text {rd }}$ mark independent
	b		p.d. across capacitor when $E=300 \mathrm{~J}$, $V_{300 \mathrm{~J}}=\sqrt{ }(2 E / C)=\sqrt{ }(2 \times 300 \mathrm{~J} / 120 \mathrm{~F})=\sqrt{ } 5 \mathrm{~V}=2.24 \mathrm{~V} \checkmark$ p.d. across capacitor when $E=50 \mathrm{~J}, \mathrm{~V}_{50} \mathrm{~J}=0.91 \mathrm{~V} \checkmark$ $\text { time }=-\ln (0.91 / 2.24) \times 30 \times 10^{-3} \times 120=3.2 \mathrm{~s} \checkmark$ minimum value because no external load \checkmark	4	Other routes may be used. Bald correct answer gains all three marks for the calculation.
			Total	9	
3	a		Energy gained by block $=541 \mathrm{~J} \checkmark$ Power per $\mathrm{m}^{2}=541 /(600 \times 0.0013)=690 \mathrm{~W} \mathrm{~m}^{-2} \checkmark$	2	Accept 540 J No s.f. penalty. Accept range of answers due to sf choice. Allow $700 \mathrm{~W} \mathrm{~m}^{-2}$
	b		$\begin{aligned} & \hline \text { Power output of Sun }=1.4 \times 10^{3} \times 4 \times \pi \times\left(1.5 \times 10^{11}\right)^{2} \checkmark \\ &=3.96 \times 10^{26} \mathrm{~W} \checkmark \end{aligned}$	2	1 mark for correct calculation of area of sphere $=2.83 \times 10^{23} \mathrm{~m}^{2}$. Need own value
	C	i	Identification of positron as anti-lepton, neutrino as lepton \checkmark Lepton number on LHS = zero, lepton number on RHS = zero	2	
	C	ii	Mass loss from one three-stage reaction, $\Delta m=0.0265$ u \checkmark Energy released per reaction $=\Delta m c^{2}$ $\begin{array}{r} =\left(0.0265 \times 1.661 \times 10^{-27}\right) \mathrm{kg} \times 9 \times 10^{16} \mathrm{~m}^{2} \mathrm{~s}^{-2}=3.96 \times 10^{-12} \mathrm{~J} \checkmark \\ \text { Number of reactions } \mathrm{s}^{-1}=3.8 \times 10^{26} \mathrm{~J} /\left(3.96 \times 10^{-12} \mathrm{~J} \times 0.98\right) \checkmark \\ =9.8 \times 10^{37} \end{array}$	4	Or $4.4 \times 10^{-29} \mathrm{~kg}$ Ecf within question throughout 3 marks maximum for 9.6 or 9.4×10^{37} Correct bald answer gains four marks
			Total	10	

Section B					
Question			Answer	Marks	Guidance
4	a		$\begin{aligned} & E=3.43 \mathrm{~N} \times 3.951 \mathrm{~m} /\left(5.9 \times 10^{-8} \mathrm{~m}^{2} \times 0.002 \mathrm{~m}\right)^{\checkmark} \\ & =1.15 \times 10^{11} \mathrm{~Pa} \checkmark \end{aligned}$	2	Or via $\varepsilon=5.062 \times 10^{-4} \& \sigma=5.814 \times 10^{7} \mathrm{~Pa}$ Bald correct answer gains two marks. Accept two s.f. answer of $1.1 \times 10^{11} \mathrm{~Pa}$
	b	i	$\begin{aligned} & \text { area occupied by one atom }=\left(2.3 \times 10^{-10} \mathrm{~m}\right)^{2} \\ & =5.29 \times 10^{-20} \mathrm{~m}^{2} \checkmark \end{aligned}$ Number of atoms in $5.9 \times 10^{-8} \mathrm{~m}^{2}$ $\begin{aligned} & =5.9 \times 10^{-8} \mathrm{~m}^{2} / 5.29 \times 10^{-20} \mathrm{~m}^{2}=1.115 \times 10^{12} \checkmark \\ & \text { Tension }=3.43 \mathrm{~N} / 1.115 \times 10^{12}=3.1 \times 10^{-12} \mathrm{~N} \end{aligned}$	3	Bald correct answer gains three marks. Allow use of $\pi \mathrm{r}^{2}$ giving area $=4.15 \times 10^{-20} \mathrm{~m}^{2}$ and $/ 1.42 \times 10^{12}$ atoms per layer. $3^{\text {rd }}$ marking point available as ecf from number of atoms. $\left(3.075 \times 10^{-12} \mathrm{~N} \text { to } 4 \text { s.f. }\right)$
	b	ii	$\begin{aligned} & x=F L / A E \\ & =3.43 \mathrm{~N} \times 2.3 \times 10^{-10} \mathrm{~m} /\left(5.9 \times 10^{-8} \mathrm{~m}^{2} \times 1.15 \times 10^{11} \mathrm{~Pa}\right) \\ & =1.163 \times 10^{-13} \mathrm{~m}=1.2 \times 10^{-13} \mathrm{~m} \checkmark \end{aligned}$	2	Ecf from (a) if this method used. (precise value of E gives $1.16 \times 10^{-13} \mathrm{~m}$) Alternative methods possible, e.g. simple ratio: $\begin{aligned} & x=0.002 \mathrm{~m} \times 2.3 \times 10^{-10} \mathrm{~m} / 3.591 \mathrm{~m} \\ & =1.16 \times 10^{-13} \mathrm{~m} \checkmark \\ & \text { Or } x=\varepsilon L=5.062 \times 10^{-4} \times 2.3 \times 10^{-10} \mathrm{~m} \checkmark \\ & =1.16 \times 10^{-13} \mathrm{~m} \checkmark \end{aligned}$
	b	iii	$\begin{aligned} & \text { Force constant }=3.1 \times 10^{-12} \mathrm{~N} / 1.16 \times 10^{-13} \mathrm{~m} \checkmark \\ & =26.7 \mathrm{~N} \mathrm{~m}^{-1}=27 \mathrm{~N} \mathrm{~m}^{-1} \checkmark \end{aligned}$	2	Ecf fromb(i) and b(ii). No credit if 3.43 N used. Unrounded answers give acceptable $26 \mathrm{~N} \mathrm{~m}^{-1}$ to two s.f.

Section C					
Question			Answer	Marks	Guidance
7	a		0.0119 m	1	no s.f. penalty (so 0.011935 is OK, as is 0.012))
	b		$\begin{aligned} & \text { Number of waves in pulse }=1 \times 10^{-6} \times 3.5 \times 10^{6}=3.5 \checkmark \\ & \text { Wavelength }=4.4 \times 10^{-4} \mathrm{~m} \checkmark \\ & \text { Resolution }=4.4 \times 10^{-4} \times 3.5 / 2=7.7 \times 10^{-4} \checkmark \end{aligned}$	3	Ecf from number of waves in a cycle Or pulse duration x velocity/2. 1.54×10^{-3} credited two marks
			Total	4	
8	a		Width of Fig $8=53 \mathrm{~mm}$ Number of pixels along length $=(25 / 53) \times 920=434 \checkmark$ Resolution $=39 / 434=0.090 \mathrm{~mm} \checkmark$	2	Expect to see one stage calculation. Allow horizontal length or length along arrow ECF from length of image. Range: rounds to 0.09 mm to 1 s.f.
	b		1 bit per pixel so only choice of 2 possibilities (0 \& 1) \checkmark Density of white pixels in image \checkmark	2	'one bit per pixel' on its own is not enough for mark
			Total	4	

Question			Answer	Marks	Guidance
9	a	i	The value of the variable concerned falls by a factor of the square of the distance between the source and detector \checkmark Intensity will have fallen to $1 / R^{2}$ at the object (this now acts as the source) this reflected intensity falls by afactor of $1 / R^{2}$ again; intensity of reflection signal at source $=1 / R^{2} \times 1 / R^{2}=1 / R^{4} \checkmark$	2	AW - clear explanations gain the mark A complete and clear statement required.
	a	ii	$\begin{aligned} & \text { Calculation of intensity ratio }=1 /(2.4)^{4} \checkmark \\ &=0.03014=0.030 \checkmark \\ & \text { Power difference in } \mathrm{dB}=10 \log _{10} 0.030=(-) 15 \mathrm{~dB} \end{aligned}$	3	$10 \log _{10} 0.03014=(-) 15.2 \mathrm{~dB}$
	b	i	$\begin{aligned} & \ln 0.93=-0.07257=-\alpha \times 0.1 \checkmark \\ & \alpha=0.07257 / 0.1=0.726 \checkmark \end{aligned}$	2	Evaluation needed for second mark
	b	ii	$\begin{aligned} & P=\frac{P_{0} e^{-\alpha(2 R)}}{R^{4}} \Rightarrow R^{4} \times \frac{P}{P_{0}}=e^{-\alpha(2 R)} \\ & \ln \left(3.0^{4} \times \frac{P}{P_{0}}\right)=\ln 3.0^{4}+\ln \frac{P}{P_{0}}=-2 \alpha R=-6.0 \alpha \end{aligned}$ Using $\alpha=0.7 \mathrm{~m}^{-1} \Rightarrow P / P_{0}=0.000186 \checkmark$ $10 \log (0.000186)=-37.3 \mathrm{~dB} \checkmark$	4	Bald correct answer gains all the marks. Ecf own value of α. If the factor of two left out in the attenuation expression, leading to an answer of $-28.2 \mathrm{~dB}(\alpha$ $\left.=0.7 \mathrm{~m}^{-1}\right)$ or $-28.5 \mathrm{~dB}\left(\alpha=0.726 \mathrm{~m}^{-1}\right)$, three marks. Using $\alpha=0.726 \mathrm{~m}^{-1} \Rightarrow P / P_{0}=0.000158$ $\& \Delta P=-38.0 \mathrm{~dB}$ Ecf from third to fourth mark.
			Total	11	

Question		Answer	Marks	Guidance
10		Level 3 (5-6 marks) Superposition: Clear explanation of the principle of superposition including the concept of in phase superposition producing highest amplitude resultant and the link between amplitude and power. Bats: Clear explanation of superposition from the two sources and explanation/description of energy distribution of the sound in front of the bat. Medical ultrasound: Clear explanation of delaying pulses so that they meet in front of the transducer in phase at a (chosen) depth. Link between amplitude and intensity/power of beam at given depth and why this is important. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Gives a clear explanation principle of superposition and its relevance to the beam from bats or medical ultrasound. Or a superficial explanation of all three sections attempted. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Gives a superficial description of any two of the three areas of interest. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit	6	Indicative scientific points may include: - Credit clear diagram showing waves from two sources meeting in phase. - Principle of superposition clearly stated - Waves from two sources will always meet in phase along the line at right angles to the sources at the midpoint of the sources. - Energy 'focused' /redistributed along line where waves meet in phase - Relationship between amplitude and power - More intense beam will have same proportion of energy at 'target' but greater value of energy. - Medical ultrasound concentrates energy at a depth - Concentrating energy in this fashion means greater energy reflected - Greater return energy delivers more detail/information - Concentrating energy in this manner allows greater depths to be imaged
		Total	6	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

