GCE

Physics A
H556/03: Unified physics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation		Meaning
AE	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Used to indicate an incorrect answer or a point where a mark is lost.
there are no further errors.		

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
$\mathbf{(~)}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance

Question			Answer	Marks	Guidance
1	(a)	(i)	$\begin{aligned} & (F=m a=) 190 \times 10^{3}=2.1 \times 10^{5} a \\ & a=0.90\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	$a=0.905$ to 3 SF
		(ii)	$\begin{aligned} & \left(v^{2}=u^{2}+2 \text { as gives }\right) 36=2 \times 0.90 \times s \\ & s=20(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow any valid suvat approach; allow ECF from (a)(i) Note using $a=1$ gives $s=18(\mathrm{~m})$
		(iii)1	$P=F V$ One correct calculation e.g. $F=100 \times 10^{3}$ and $v=42$ gives $P=4.2 \times 10^{6}(\mathrm{~W})$ $F v=$ constant	B1 B1 B1	Equation must be seen (not inferred from working) Allow any corresponding values of F and v; working must be shown. No credit for finding area below curve Allow F is proportional to $1 / v$ or graph is hyperbolic or correct calculation of $F v$ at two points (or more)
		(iii)2	$\begin{aligned} & (P=V I=4.2 \mathrm{MW} \text { so }) 4.2 \times 10^{6}=25 \times 10^{3} \times I \\ & I=170(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { Allow } P=4 \mathrm{MW} \text { or ECF from (iii)1 } \\ & \text { Expect answers between 160-170 (A) } \end{aligned}$
	(b)	(i)	$\begin{aligned} & R(=\rho L / A)=1.8 \times 10^{-8} \times 1500 / 1.1 \times 10^{-4} \\ & R=0.25(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	
		(ii)	$\begin{aligned} & E=\sigma / \varepsilon=T / A \varepsilon(\mathrm{so} T=E A \varepsilon) \\ & T=1.2 \times 10^{10} \times 1.1 \times 10^{-4} \times 0.013 \\ & T=1.7 \times 10^{4}(\mathrm{~N}) \text { or } 17(\mathrm{kN}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	or calculation of $\sigma=1.56 \times 10^{8}\left(\mathrm{Nm}^{-2}\right)$ or $T=1.56 \times 10^{8} \times 1.1 \times 10^{-4}$
			Total	13	

Question			Answer	Marks	Guidanc
2	(a)	(i)	$R=3000+1500$ $V=12 \times 1500 / 4500=4(.0)(V)$		$R=4500(\Omega)$ $\text { or } I=V / R=12 / 4500=2.67 \mathrm{~mA}$ $V_{1500}=2.67 \mathrm{~mA} \times 1.5 \mathrm{k} \Omega=4.0(\mathrm{~V})$
		(ii)	$\begin{aligned} & V(=12 \times 1500 / 1600)=11.25(\mathrm{~V}) \\ & \Delta V=11.25-4.0=7.25(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \text { A0 } \end{aligned}$	
	(b)		see next page		

H556/03				Mark Scheme October 2021
Questio		Answer	Marks	Guidance
(b)	*	Level 3 (5-6 marks) Clear description of a valid experiment which would lead to accurate results, sensible suggestions for table, graph and accuracy There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Reasonable description of experiment and sensible suggestion for table or graph or accuracy, or attempt at all three There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Attempt at experiment and attempt at table or graph or accuracy There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1 x 6	Indicative scientific points may include: Experiment - Diagram(s) to show electrical circuit and/or set-up of apparatus - Use ammeter in series to measure current I through LED - Use micrometer to measure thickness of (one sheet of) tracing paper - or use calliper with m sheets of thickness t; measure t and use $x=m t$ - Measure I for various x - Calculate In I Results table - Need columns for total thickness x (or number of sheets m and $x=$ $m t$), current $I, \ln (I)$ - Units if included should be appropriate and presented in an appropriate format e.g. $\ln (I / m A)$ Graph - plot In I against x - expect straight line graph with negative gradient and non-zero intercept - gradient $=-n$ and y-intercept $\mathrm{c}=\ln k$ - $k=\mathrm{e}^{\mathrm{c}}$ (alternatively, k is the current when no sheets of paper are used) Accuracy - work in darkened room/constant low light conditions - keep distance between light-source and LDR constant - use same power light source and same LDR throughout - position yourself so as not to cast shadow on LDR - clamp equipment to bench to ensure distances do not change
		Total	9	

Question			Answer	Marks	Guidance
3	(a)		GPE is the work done in bringing an object from infinity (to that point)	B1	Ignore any equations
	(b)	(i)	$\begin{aligned} & \text { GPE }=(-) \text { GMm/r } \\ & \text { GPE }=(-) 6.67 \times 10^{-11} \times 2 \times 10^{30} \times 810 / 1.5 \times 10^{11} \\ & \text { GPE }=(-) 7.2 \times 10^{11}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	Mark is for full substitution, including 6.67×10^{-11} for G
		(ii)	$\begin{aligned} & v=2 \pi r / T=2 \pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7}\left(=29.8 \mathrm{~km} \mathrm{~s}^{-1}\right) \\ & \mathrm{KE}=1 / 2 m v^{2}=0.5 \times 810 \times\left(29.8 \times 10^{3}\right)^{2} \\ & \mathrm{KE}=3.6 \times 10^{11}(\mathrm{~J}) \end{aligned}$	C1 M1 A1	Allow proof by algebraic method for full marks e.g. $m v^{2} / r$ $=G M m / r^{2}$ so $m v^{2}=G M m / r$ Therefore KE/GPE $=1 / 2 m v^{2} /(G M m / r)=1 / 2$
		(iii)	$\begin{aligned} & \text { total energy }=(-)\left(7.2 \times 10^{11}-3.6 \times 10^{11}\right) \\ & \text { total energy }=(-) 3.6 \times 10^{11}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	working must be shown; ECF (i) and (ii)
	(c)	(i)	$\begin{aligned} & \boldsymbol{A}=470 / 8.8 \times 10^{-13}=5.3 \times 10^{14}(\mathrm{~Bq}) \\ & \lambda=\ln 2 /\left(88 \times 3.16 \times 10^{7}\right)\left(=2.5 \times 10^{-10} \mathrm{~s}^{-1}\right) \\ & (A=\lambda N) ; N\left(=5.3 \times 10^{14} / 2.5 \times 10^{-10}\right)=2.1 \times 10^{24} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Mark is for correct calculation of A (in Bq or decays per s) Mark is for correct working to give λ in s^{-1}
		(ii)	$\begin{aligned} & P=P_{o} \exp (-\lambda t) \\ & P=470 \exp (-\ln 2 \times 100 / 88) \\ & P=210(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow formula in terms of N or A Allow calculation in terms of N or A; allow ECF for N or A
			Total	13	

Question			Answer	Marks	Guidance
4	(a)	*	Level 3 (5-6 marks) Clear explanation using kinetic theory ideas and either a clear proof using formulae or a correct calculation There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) A partial explanation using kinetic theory ideas and either a partial proof using formulae or a partial calculation There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) An attempt at either explanation or proof or calculation There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1 x 6	Indicative scientific points may include: Explanation using kinetic theory - pressure = force/area - force is caused by air molecules colliding with oven walls - Newton's $2^{\text {nd }}$ Law states force $=$ rate of momentum change - increased temperature means each molecule has greater KE - hence greater velocity and hence greater momentum - and more collisions with walls per second - hence greater rate of momentum change on hitting walls. - This would lead to greater pressure if N remained constant - so number of molecules in oven must decrease (air escapes) - so fewer but 'harder' collisions at higher temperatures giving constant pressure. - Rms velocity c increases with temperature but number N decreases and so effects balance out to keep total KE ($1 / 2 \mathrm{Nmc}^{2}$) constant Proof using formulae - equate $p V=N \mathrm{k} T$ and $E=\frac{3}{2} N \mathrm{k} T$ to show $E=\frac{3}{2} p V$ - in an ideal gas, all internal energy E is kinetic energy - so E is independent of temperature Calculation - Internal energy $=\frac{3}{2} p V=1.5 \times 0.065 \times 1.0 \times 10^{5}=9.8 \mathrm{~kJ}$ - At $T=293 \mathrm{~K}, N=p V / k T=1.6 \times 10^{24}$ and $n=2.7$ moles - At $T=473 \mathrm{~K}, N=1.0 \times 10^{24}$ and $n=1.7$ moles - so we can show that $N T$ (and/or $n T$) remain constant

Question			Answer	Marks	Guidance
4	(b)	(i)		B1 B1	One correct line (or dot and cross) drawn Line must go through centre of coil Allow an incomplete line or a complete circle round the coil Ignore direction of arrow More than one line drawn All lines drawn must go through centre of coil and follow correct shape and direction of field Ignore spacing of lines Ignore any lines to the right of the coil
		(ii)	- (the magnetic) flux (of the coil) links the base / saucepan - (the size/direction of) the flux linkage (constantly) changes/alternates (causing an alternating induced e.m.f.) - (induced) current is large because metal/base/ saucepan has low resistance	B1 x 2	2 out of 3 possible marking points Allow (the magnetic) field lines cut the (base of the) saucepan Allow the (magnetic) field constantly changes/alternates Allow a bald statement of Faraday's Law
		(iii)	The resistance of glass-ceramic/the (cook's) hand is (very) large So (induced) current (or heating effect of current) is zero/negligible	M1 A1	Allow glass-ceramic/hand is an insulator/not a (good) conductor Do not allow the induced e.m.f. is (very) small
			Total	12	

Question			Answer	Marks	Guidance
5	(a)		the (sound) wave reflects at the water (surface) reflected wave interferes/superposes with the incident wave to produce a (resultant) wave with a node at the water surface and an antinode at the top of the tube $l=\lambda / 4$	B1 B1 B1 B1	Allow the (two) waves interfere/superpose Do not allow interact/combine
	(b)	(i)	$l=(v / 4)(1 / f)-k$ Correct comparison with $y=m x+c$	M1 A1	Correct manipulation of equation must be shown
		(ii)	large triangle used to determine gradient gradient calculated correctly $v=320\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1 B1 B1	$\Delta x>0.6 \times 10^{-3} \mathrm{~s}$ Expect between 80 and $82\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow 320 ± 20; allow ECF from an incorrect gradient
	(c)	(i)	Value of 1/F determined correctly from graph $F=350(\mathrm{~Hz})$	A1	Allow values between $2.83 \times 10^{-3} \mathrm{~s}$ and $2.84 \times 10^{-3} \mathrm{~s}$ Allow only alternative methods which use values from line of best fit
		(ii)	$\begin{aligned} (100(\Delta F / F)=) & 100 \Delta v / v \\ & +\frac{100(\Delta l+\Delta k)}{(l+k)} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
			Total	13	

Question			Answer	Marks	Guidance
6	(a)		At $t=0$ (and $t=15,30$) the (magnitude of the) centripetal force equals $R-W$ (as only vertical forces act on the tourist)	B1	Allow at $t=0$ (or the bottom of the circle) the centripetal force is provided by the resultant/ upwards/vertical force
	(b)	(i)	(For circular motion) there must (always) be a resultant force towards the centre The resultant force is not always vertical/sometimes has a horizontal component This can only be provided by friction/cannot be provided by R and W / R and W are always vertical/only F is horizontal	B1 x 2	any 2 from 3 marking points Allow F provides the horizontal (component of the) centripetal force
		(ii)	Sine wave with period 30 min and amplitude 0.050 (N) Correct phase, i.e. negative sine wave	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Must start at the origin
		(iii)	$\begin{aligned} & F=0.050 \cos 40^{\circ} \\ & F=0.038(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow alternative methods e.g. triangle of forces Allow ECF from graph if used
	(c)		$\begin{aligned} & m=650 / \mathrm{g} \text { or } m=650 / 9.81(=66.3 \mathrm{~kg}) \\ & \left(F=m r \omega^{2} \text { gives }\right) \\ & d=0.050 / m \omega^{2}=0.050 / 66.3 \times\left(3.5 \times 10^{-3}\right)^{2} \\ & d=62(\mathrm{~m}) \end{aligned}$	C1 C1 A1	$\begin{aligned} & \text { Not } m=650 \mathrm{~kg} \text { or } m=65 \mathrm{~kg} \\ & \text { or }\left(F=m v^{2} / r \text { and } v=2 \pi r / T \text { gives }\right) \\ & d=0.050 \times(30 \times 60)^{2} /\left(4 \pi^{2} \times 66.3\right) \end{aligned}$
			Total	10	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

